Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T02:28:07.908Z Has data issue: false hasContentIssue false

Egyptian Broomrape (Phelipanche aegyptiaca) Management in Carrot under Field Conditions

Published online by Cambridge University Press:  20 January 2017

Amnon Cochavi
Affiliation:
Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), NeweYa'ar Research Center, P.O. Box 1021, Ramat Yishay 30095, Israel
Guy Achdari
Affiliation:
Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), NeweYa'ar Research Center, P.O. Box 1021, Ramat Yishay 30095, Israel
Evgeny Smirnov
Affiliation:
Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), NeweYa'ar Research Center, P.O. Box 1021, Ramat Yishay 30095, Israel
Baruch Rubin
Affiliation:
R. H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
Hanan Eizenberg*
Affiliation:
Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), NeweYa'ar Research Center, P.O. Box 1021, Ramat Yishay 30095, Israel
*
Corresponding author's E-mail: [email protected].

Abstract

The chlorophyll-lacking holoparasite Egyptian broomrape is a major threat for many field crops in Israel. In carrot, a high-value crop that is grown year round in Israel, heavy infestation with broomrape can cause severe damage and even total yield loss. The objective of this study was to determine, under field conditions, selective herbicides that would effectively control Egyptian broomrape without damaging the carrots. Ten field experiments were performed between the years 2010 and 2013. The acetolactate synthase inhibitor herbicides imazapic and imazamox caused deformation of carrot taproots at low doses, and significantly reduced yield amount and quality. Glyphosate was found to be the safest herbicide for broomrape management in carrot. Carrot selectivity and broomrape control efficacy were examined with three sequential applications of nine glyphosate doses. A nonlinear log-logistic curve described the response of noninfested carrot taproot biomass to glyphosate. No significant reduction in taproot biomass was observed when glyphosate was applied at up to 149 g ae ha−1. When glyphosate was applied in an Egyptian broomrape-infested carrot field, a hormetic effect was observed, perhaps due to Egyptian broomrape control. A two-parameter exponential decay curve described the broomrape response to glyphosate. Three sequential foliar applications of glyphosate, at 108 g ha−1, completely controlled Egyptian broomrape. Our results demonstrate that glyphosate applied sequentially at a low dose on Egyptian broomrape-infested carrot can control this parasitic weed.

La planta holoparásita carente de clorofila Phelipanche aegyptiaca representa una importante amenaza para muchos cultivos en Israel. En zanahoria, un cultivo de alto valor producido durante todo el año en Israel, altas infestaciones de P. aegyptiaca pueden causar severos daños e inclusive pérdida total de rendimientos. El objetivo de este estudio fue determinar, bajo condiciones de campo, cuáles herbicidas selectivos pueden controlar P. aegyptiaca en forma efectiva sin dañar la zanahoria. Diez experimentos de campo fueron realizados entre 2010 y 2013. Los herbicidas inhibidores de acetolactate synthase, imazapic e imazamox, causaron deformación de la raíz pivotante de la zanahoria a dosis bajas, y redujeron significativamente el rendimiento y la calidad. Se encontró que glyphosate fue el herbicida más seguro para el manejo de P. aegyptiaca en zanahoria. La selectividad en la zanahoria y la eficacia para el control de P. aegyptiaca fueron examinadas con tres aplicaciones secuenciales de nueve dosis de glyphosate. Una curva no-lineal log-logística describió la respuesta a glyphosate de la biomasa de raíz pivotante de zanahoria sin infestación de la maleza. No se observó ninguna reducción significativa en la biomasa de la raíz pivotante cuando se aplicó glyphosate hasta 149 g ae ha−1. Cuando glyphosate se aplicó en un campo de zanahoria infestado con P. aegyptiaca, se observó un efecto hormético, tal vez debido al control de P. aegyptiaca. Una curva de decrecimiento exponencial de dos factores describió la respuesta de P. aegyptiaca a glyphosate. Tres aplicaciones secuenciales de glyphosate a 108 g ha−1, controlaron completamente P. aegyptiaca. Nuestros resultados demuestran que glyphosate aplicado secuencialmente a bajas dosis en campos de zanahoria infestados con P. aegyptiaca pueden controlar esta maleza parasítica.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aly, R, Goldwasser, Y, Eizenberg, H, Hershenhorn, J, Golan, S, Kleifeld, Y (2001) Broomrape (Orobanche cumana) control in sunflower (Helianthus annuus) with imazapic. Weed Technol 15:306309 CrossRefGoogle Scholar
Belz, RG, Piepho, HP (2012) Modeling effective dosages in hormetic dose–response studies. Plos One 7 CrossRefGoogle ScholarPubMed
Bernhard, RH, Jensen, JE, Andreasen, C (1998) Prediction of yield loss caused by Orobanche spp in carrot and pea crops based on the soil seedbank. Weed Res 38:191197 CrossRefGoogle Scholar
Brain, P, Cousens, R (1989) An equation to describe dose responses where there is stimulation of growth at low doses. Weed Res 29:9396 CrossRefGoogle Scholar
Castejon-Munoz, M, Romero-Munoz, F, Garcia-Torres, L (1993) Effect of planting date on broomrape (Orobanche cernua L.) infections in sunflower (Helianthus annuus L.). Weed Res 33:171176 CrossRefGoogle Scholar
Colquhoun, J, Eizenberg, H, Mallory-Smith, C (2006) Herbicide placement site affects small broomrape (Orobanche minor) control in red clover. Weed Technol 20:356360 CrossRefGoogle Scholar
Eizenberg, H, Aly, R, Cohen, Y (2012a) Technologies for smart chemical control of broomrape (Orobanche spp. and Phelipanche spp.). Weed Sci 60:316323 CrossRefGoogle Scholar
Eizenberg, H, Colquhoun, J, Mallory-Smith, C (2005a) A predictive degree-days model for small broomrape (Orobanche minor) parasitism in red clover in Oregon. Weed Sci 53:3740 CrossRefGoogle Scholar
Eizenberg, H, Colquhoun, JB, Mallory-Smith, CA (2006) Imazamox application timing for small broomrape (Orobanche minor) control in red clover. Weed Sci 54:923927 CrossRefGoogle Scholar
Eizenberg, H, Ephrath, JH, Kanampiu, F (2013) Chemical control. Pages 415428 in Joel, DM, Gressel, J, Musselman, LJ, eds. Parasitic Orobanchaceae, Parasitic Mechanism and Control Strategy. Heidelberg: Springer CrossRefGoogle Scholar
Eizenberg, H, Hershenhorn, J, Achdari, G, Ephrath, JE (2012b) A thermal time model for predicting parasitism of Orobanche cumana in irrigated sunflower—field validation. Field Crops Res 137:4955 CrossRefGoogle Scholar
Eizenberg, H, Shtienberg, D, Silberbush, M, Ephrath, JE (2005b) A new method for in-situ monitoring of the underground development of Orobanche cumana in sunflower (Helianthus annuus) with a mini-rhizotron. Ann Bot 96:11371140 CrossRefGoogle ScholarPubMed
Eizenberg, H, Tanaami, Z, Jacobsohn, R, Rubin, B (2001) Effect of temperature on the relationship between Orobanche spp. and carrot ( Daucus carota L.). Crop Prot 20:415420 CrossRefGoogle Scholar
Ephrath, JE, Hershenhorn, J, Achdari, G, Bringer, S, Eizenberg, H (2012) Use of logistic equation for detection of the initial parasitism phase of Egyptian broomrape (Phelipanche aegyptiaca) in tomato. Weed Sci 60:5763 CrossRefGoogle Scholar
Goldwasser, Y, Eizenberg, H, Golan, S, Kleifeld, Y (2003) Control of Orobanche crenata and Orobanche aegyptiaca in parsley. Crop Prot 22:295305 CrossRefGoogle Scholar
Goldwasser, Y, Eizenberg, H, Hershenhorn, J, Plakhine, D, Blumenfeld, T, Buxbaum, H, Golan, S, Kleifeld, Y (2001) Control of Orobanche aegyptiaca and O. ramosa in potato. Crop Prot 20:403410 CrossRefGoogle Scholar
Heide-Jørgensen Henning S (2013) Introduction: the parasitic syndrome in higher plants. Pages 614 in Joel, DM, Gressel, J, Musselman, LJ, eds. Parasitic Orobanchaceae, Parasitic Mechanism and Control Strategy. Heidelberg: Springer CrossRefGoogle Scholar
Hershenhorn, J, Goldwasser, Y, Plakhine, D, Lavan, Y, Herzlinger, G, Golan, S, Chilf, T, Kleifeld, Y (1998a) Effect of sulfonylurea herbicides on Egyptian broomrape (Orobanche aegyptiaca) in tomato (Lycopersicon esculentum) under greenhouse conditions. Weed Technol 12:115120 CrossRefGoogle Scholar
Hershenhorn, J, Plakhine, D, Goldwasser, Y, Westwood, JH, Foy, CL, Kleifeld, Y (1998b) Effect of sulfonylurea herbicides on early development of Egyptian broomrape (Orobanche aegyptiaca) in tomato (Lycopersicon esculentum). Weed Technol 12:108114 CrossRefGoogle Scholar
Jacobsohn, R, Greenberger, A, Katan, J, Levi, M, Alon, H (1980) Control of Egyptian broomrape (Orobanhe aegyptiaca) and other weeds by means of solar heating of the soil by polyethylene mulching. Weed Sci 28:312316 CrossRefGoogle Scholar
Jacobsohn, R, Kelman, Y (1980) Effectiveness of glyphosate in broomrape (Orobanche spp.) control in four crops. Weed Sci 28:692699 CrossRefGoogle Scholar
Lolas, PC (1994) Herbicides for control of broomrape (Orobanche ramosa L.) in tobacco ( Nicotiana tabacum L.). Weed Res 34:205209 CrossRefGoogle Scholar
Onofri, A, Carbonell, EA, Piepho, HP, Mortimer, AM, Cousens, RD (2010) Current statistical issues in Weed Research . Weed Res 50:524 CrossRefGoogle Scholar
Parker, C (2012) Parasitic weeds: a world challenge. Weed Sci 60:269276 CrossRefGoogle Scholar
Perez-De-Luque, A, Sillero, JC, Moral, A, Cubero, JI, Rubiales, D (2004) Effect of sowing date and host resistance on the establishment and development of Orobanche crenata in faba bean and common vetch. Weed Res 44:282288 CrossRefGoogle Scholar
Qasem, JR (1998) Chemical control of branched broomrape (Orobanche ramosa) in glasshouse grown tomato. Crop Prot 17:625630 CrossRefGoogle Scholar
Rubiales, D, Verkleij, J, Vurro, M, Murdoch, AJ, Joel, DM (2009) Parasitic plant management in sustainable agriculture. Weed Res 49:15 CrossRefGoogle Scholar
Sauerborn, J, Linke, KH, Saxena, MC, Koch, W (1989a) Solarization—a physical control method for weeds and parasitic plants (Orobanche spp.) in Mediterranean agriculture. Weed Res 29:391397 CrossRefGoogle Scholar
Sauerborn, J, Saxena, MC, Meyer, A (1989b) Broomrape control in faba bean (Vicia faba L.) with glyphosate and imazaquin. Weed Res 29:97102 CrossRefGoogle Scholar
Schabenberger, O, Tharp, BE, Kells, JJ, Penner, D (1999) Statistical tests for hormesis and effective dosages in herbicide dose response. Agron J 91:713721 CrossRefGoogle Scholar
Schaffer, AA, Jacobsohn, R, Joel, DM, Eliassi, E, Fogelman, M (1991) Effect of broomrape (Orobanche spp) infection on sugar content of carrot roots. Hortscience 26:892893 CrossRefGoogle Scholar