Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T05:06:46.922Z Has data issue: false hasContentIssue false

Effects of Planting Pattern and Cultivar on Weed and Crop Growth in Aerobic Rice System

Published online by Cambridge University Press:  20 January 2017

Gulshan Mahajan
Affiliation:
Rice Section, Punjab Agricultural University, Ludhiana 141004, Punjab, India
Bhagirath S. Chauhan*
Affiliation:
International Rice Research Institute, Los Baños, Philippines
*
Corresponding author's E-mail: [email protected]

Abstract

Weeds are a major biotic constraint to aerobic rice production in Asia. Research is needed on the effects of cultural practices on weed management in aerobic rice, including techniques such as planting pattern and competitive cultivars. Field experiments were conducted in Punjab, India, in the wet seasons of 2008 and 2009 to study the growth of weeds and two rice cultivars [PR 115 and Punjab (P.) Mehak 1] in relation to planting pattern (uniform rows [23-cm row spacing] and paired rows [15-, 30-, and 15-cm row spacings]) under aerobic conditions. Junglerice and rice flatsedge were the dominant weed species during the early stages of the crop, while Chinese sprangletop and large crabgrass were the predominant species during flowering stage of the crop. Weed dry matter was not affected by planting pattern of P. Mehak 1; however, for PR 115, weed dry matter was greater in rice grown in uniform rows (244 g m−2) than in paired rows (183 g m−2). Planting patterns did not affect weed-free crop growth and yield, but weeds tended to be more abundant in the uniform planting system, particularly under cultivar PR 115. Consequently, this cultivar grew and yielded better under the paired rows when weeds were present. The cultivar PR 115 had greater yield potential than P. Mehak 1, but growth and productivity of P. Mehak 1 were unaffected by the planting patterns, suggesting better competitive ability against weeds than PR 115. The results imply that yield of some aerobic rice cultivars may be improved by exploring competitiveness of rice cultivars through paired row planting patterns. There is a need to study plasticity changes for cultivars which respond with more competiveness in paired rows. The identified traits could be useful as selection criteria for screening weed-competitive cultivars in paired row pattern.

Las malezas son una de las principales limitantes bióticas para la producción de arroz aeróbico en Asia. Se necesita investigación sobre los efectos de las prácticas culturales en el manejo de malezas en el cultivo de arroz aeróbico, usando técnicas tales como, patrones de siembra y cultivares competitivos. Se llevaron a cabo experimentos de campo en Punjab, India, en la temporada de lluvias en 2008 y 2009 para estudiar el crecimiento de las malezas y de dos cultivares de arroz [PR 115 y Punjab (P.) Mehak 1] en relación al patrón de siembra [surcos uniformes (23-cm entre líneas) y surcos dobles (15-30-15-cm entre líneas)], bajo condiciones aeróbicas. Las malezas dominantes fueron Echinochloa colona y Cyperus iria, durante las etapas tempranas del cultivo, mientras que Leptochloa chinensis y Digitaria sanguinalis fueron las especies predominantes durante la etapa de floración. La materia seca de la maleza no se afectó por el patrón de siembra de P. Mehak 1; sin embargo, para PR 115, la materia seca fue mayor cuando el arroz se cultivó en surcos uniformes (244 g m−2) que en los surcos dobles (183 g m−2). Los patrones de siembra no afectaron el crecimiento ni el rendimiento del cultivo en las parcelas libres de maleza, pero las malezas tendieron a ser más abundantes en los sistemas de siembra uniforme, particularmente bajo el cultivar PR 115. Consecuentemente, este cultivar tuvo mayor crecimiento y rendimiento bajo surcos dobles cuando hubo presencia de malezas. El cultivar PR 115 tuvo mayor potencial de rendimiento que P. Mehak 1, pero el crecimiento y la productividad de este último cultivar no se vieron afectados por los patrones de siembra, sugiriendo así, mejor habilidad competitiva en contra de las malezas que PR 115. Los resultados implican que el rendimiento de algunos cultivares de arroz aeróbico podría ser mejorado a través de la exploración de la competitividad de los mismos por medio de los patrones de siembra en surcos dobles. Existe la necesidad de estudiar los cambios de plasticidad para cultivares que respondan con mayor competitividad en surcos dobles. Las características identificadas podrían ser útiles como criterio de selección en la evaluación de cultivares que compitan con las malezas en patrones de surcos dobles.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akobundu, I. O. and Ahissou, A. 1985. Effect of interrow spacing and weeding frequency on the performance of selected rice cultivars on hydromorphic soils of West Africa. Crop Prot. 4:7176.Google Scholar
Aldrich, R. J. 1984. Weed-Crop Ecology: Principles in Weed Management. North Scituate, MA Breton Publishers. Pp. 189241.Google Scholar
Ballare, C. L., Sanchez, R. A., Scopel, A. L., Casal, J. J., and Ghersa, C. M. 1987. Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Environ. 10:551557.Google Scholar
Blackshaw, R. E., Molnar, L. J., and Larney, F. J. 2005. Fertilizer, manure and compost effects on weed growth and competition with winter wheat in western Canada. Crop Prot. 24:971980.Google Scholar
Bullock, D. G., Nielsen, R. L., and Nyquist, W. E. 1988. A growth analysis comparison of corn growth in conventional and equidistant plant spacing. Crop Sci. 28:254258.Google Scholar
Burgos, N. R., Norman, R. J., Gealy, D. R., and Black, H. 2006. Competitive N uptake between rice and weedy rice. Field Crops Res. 99:96105.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2010a. The role of seed ecology in improving weed management strategies in the tropics. Adv. Agron. 105:221262.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2010b. Implications of narrow crop row spacing and delayed Echinochloa colona and Echinochloa crus-galli emergence for weed growth and crop yield loss in aerobic rice. Field Crops Res. 117:177182.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2010c. Relative importance of shoot and root competition in dry-seeded rice growing with junglerice (Echinochloa colona) and ludwigia (Ludwigia hyssopifolia). Weed Sci. 58:295299.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2011. Row spacing and weed control timing affect yield of aerobic rice. Field Crops Res. 121:226231.Google Scholar
Chauhan, B. S., Singh, V. P., Kumar, A., and Johnson, D. E. 2011. Relations of rice seeding rates to crop and weed growth in aerobic rice. Field Crops Res. 121:105115.Google Scholar
Connolly, J., Wayne, P., and Murray, R. 1990. Time course of plant-plant interactions in experimental mixtures of annuals: density, frequency, and nutrient effects. Oecologia 82:513526.Google Scholar
Fujisaka, S., Harrington, L. W., and Hobbs, P. R. 1994. Rice-wheat in South Asia: system and long-term priorities established through diagnostic research. Agric. Sys. 46:169197.Google Scholar
GenStat 8.0. 2005. GenStat Release 8 Reference Manual. Oxford, U.K. VSN International. 343 p.Google Scholar
Gibson, K. D. and Fischer, A. J. 2004. Competitiveness of rice cultivars as a tool for crop-based weed management. Pages 517537. in Weed Biology and Management, Inderjit, , ed. Dordrecht, The Netherlands Kluwer Academic Publishers.Google Scholar
Kasperbauer, M. J. and Karlen, D. L. 1994. Plant spacing and reflected far-red light effects on photosynthate allocation in corn seedlings. Crop Sci. 34:15641569.Google Scholar
Lemerle, D., Verbeek, B., Cousens, R. D., and Coombes, N. E. 1996. The potential for selecting wheat varieties strongly competitive against weeds. Weed Res. 36:505513.Google Scholar
Linhart, Y. B. 1988. Intrapopulation differentiation in annual plants. 111. The contrasting effects of intra- and interspecific competition. Evolution 42:10471064.Google Scholar
Mahajan, G. and Brar, L. S. 2001. Integrated management of Phalaris minor in wheat. Indian J. Weed Sci. 33:913.Google Scholar
Mahajan, G. and Chauhan, B. S. 2008. Performance of penoxsulam for weed control in transplanted rice. Pest Technol. 2:114116.Google Scholar
Mahajan, G., Chauhan, B. S., and Johnson, D. E. 2009. Weed management in aerobic rice in Northwestern Indo-Gangetic Plains. J. Crop Improve. 23:366382.Google Scholar
Medd, R. W., Auld, B. A., Kemp, D. R., and Murison, R. D. 1985. The influence of wheat density and spatial arrangement on annual grass, Lolium rigidum Gaudin, competition. Aust. J. Agric. Res. 36:361371.Google Scholar
Ni, H. W., Moody, K., and Robles, R. P. 2004. Analysis of competition between wet-seeded rice and barnyardgrass (Echinochloa crus-galli) using a response-surface model. Weed Sci. 52:142146.Google Scholar
Reddy, K. N. and Boykin, J. C. 2010. Weed control and yield comparisons of twin-and single-row glyphosate-resistant cotton production systems. Weed Technol. 24:95101.Google Scholar
Tharp, B. E. and Kells, J. T. 2001. Effect of glufosinate-resistant corn (Zea mays) population and row spacing on light interception, corn yield, and common lambsquarters (Chenopodium album) growth. Weed Technol. 15:413418.Google Scholar
Tuong, T. P., Bouman, B. A. M., and Mortimer, M. 2005. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Prod. Sci. 8:231241.Google Scholar
Young, F. L., Seefeldt, S. S., and Barnes, G. F. 1999. Planting geometry of winter wheat (Triticum aestivum) can reduce jointed goatgrass (Aegilops cylindrica) spikelet production. Weed Technol. 13:183190.Google Scholar
Zhao, D. L., Atlin, G. N., Bastiaans, L., and Spiertz, J. H. J. 2006. Developing selection protocols for weed competitiveness in aerobic rice. Field Crops Res. 97:272285.Google Scholar