Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T18:52:01.006Z Has data issue: false hasContentIssue false

Effect of Synthetic Auxin Herbicides on Seed Development and Viability in Genetically Engineered Glyphosate-Resistant Alfalfa

Published online by Cambridge University Press:  23 February 2017

Sandya R. Kesoju*
Affiliation:
Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350
Rick A. Boydston
Affiliation:
Legume Genetics and Physiology Research Unit, USDA, Agricultural Research Service, Prosser, WA 99350
Stephanie L. Greene
Affiliation:
Plant and Animal Genetic Resources Preservation Unit, USDA Agricultural Research Service, Fort Collins, CO 80521
*
Corresponding author's E-mail: [email protected]

Abstract

Feral populations of cultivated crops have the potential to function as bridges and reservoirs that contribute to the unwanted movement of novel genetically engineered (GE) traits. Recognizing that feral alfalfa has the potential to lower genetic purity in alfalfa seed production fields when it is growing in the vicinity of foraging pollinators in alfalfa seed fields, industry has established production standards to control feral plants. However, with the commercialization of GE glyphosate-resistant (GR) alfalfa and the need to support the coexistence of both GE and conventional production, effective methods to control transgenic feral alfalfa need to be developed. Therefore, a study was conducted in 2012, 2013, and 2014 to determine the effect of several synthetic auxin herbicides on seed development in GR alfalfa. GR alfalfa, var. Genuity (R44BD16), was treated with dicamba, 2,4-D, triclopyr, and aminopyralid when alfalfa plants contained green seed pods. Two weeks after herbicide application, plants were harvested, air dried, and seed yield, seed germination, and seedling emergence from the soil were determined. In 2013, dicamba, triclopyr, and 2,4-D decreased alfalfa seed yield per plant compared wih nontreated plants, whereas in 2014, all four herbicides decreased alfalfa seed yield per plant 24 to 49% (by weight) compared with nontreated plants. The same trend was evident in 2012, but seed yield was variable and was not significantly different among treatments. Seed germination averaged 43, 50, and 72% in 2012, 2013, and 2014, respectively, and was not affected by the four herbicides applied at early pod-fill stage. However, seeds harvested from plants treated with dicamba, 2,4-D, and triclopyr often produced deformed and abnormal seedlings, and when planted in soil, frequently failed to emerge. The combined effects of dicamba, 2,4-D, and triclopyr in reducing seed yield, seedling emergence, and seedling growth could contribute to managing feral alfalfa populations.

Poblaciones ferales de cultivos tienen el potencial de funcionar como puentes y reservorios que contribuyan al movimiento indeseable de nuevas características producto de la ingeniería genética (GE). Al reconocer que la alfalfa feral tiene el potencial de reducir la pureza genética en los campos de producción de semilla de alfalfa cuando crece en la vecindad de polinizadores de campos de semilla de alfalfa, la industria ha establecido estándares de producción y de control de plantas ferales. Sin embargo, con la comercialización de alfalfa GE resistente a glyphosate (GR) y la necesidad de apoyar la coexistencia de producción GE y convencional, se necesita desarrollar métodos efectivos de control de alfalfa feral transgénica. Por esta razón, se realizó un estudio en 2012, 2013, y 2014 para determinar el efecto de varios herbicidas del grupo auxinas sintéticas sobre el desarrollo de la semilla en alfalfa GR. Alfalfa GR, var. Genuity (R44BD16) fue tratada con dicamba, 2,4-D, triclopyr, y aminopyralid cuando las plantas de alfalfa tenían vainas verdes. Dos semanas después de la aplicación del herbicida, las plantas fueron cosechadas, secadas al aire, y se determinó el rendimiento de semilla, la germinación de la semilla, y la emergencia de plántulas del suelo. En 2013, dicamba, triclopyr, y 2,4-D disminuyeron el rendimiento de semilla de alfalfa por planta en comparación con plantas sin tratamiento, mientras que en 2014, todos los cuatro herbicidas disminuyeron el rendimiento de la semilla de alfalfa por planta 24 a 49% (por peso) al compararse con plantas sin tratamiento. La misma tendencia fue evidente en 2012, pero el rendimiento de semilla fue variable y no fue significativamente diferente entre los tratamientos. La germinación de la semilla promedió 43, 50, y 72% en 2012, 2013, y 2014, respectivamente, y no fue afectada por ninguno de los cuatro herbicidas aplicados temprano durante el estadio de llenado de la vaina. Sin embargo, las semillas cosechadas a partir de plantas tratadas con dicamba, 2,4-D, y triclopyr frecuentemente produjeron plántulas deformadas y anormales, y cuando estas fueron sembradas en el suelo, frecuentemente fallaron en emerger. Los efectos combinados de dicamba, 2,4-D, y triclopyr sobre la reducción del rendimiento de la semilla, la emergencia de las plántulas, y el crecimiento de plántulas podría contribuir a manejar poblaciones ferales de alfalfa.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Prashant Jha, Montana State University.

References

Literature Cited

[APHIS] Animal and Plant Health Inspection Service (2005a) Availability determination of nonregulated status for alfalfa genetically engineered for tolerance to the herbicide glyphosate [Docket No. 04-085-3]. Federal Register 70: 3691736918 Google Scholar
APHIS (2014) Determination of nonregulated status for a genetically engineered (GE) low-lignin alfalfa variety developed by Monsanto Company and Forage Genetics International (FGI), designated as event KK179 [Docket No. APHIS-2013-0013]. Federal Register 78: 2373823740 Google Scholar
Bagavathiannan, MV, Gulden, RH, Van Acker, RC (2011) The ability of alfalfa (Medicago sativa) to establish in a seminatural habitat under different seed dispersal times and disturbance. Weed Sci 59: 314320 Google Scholar
Bagavathiannan, MV, Van Acker, RC (2009) Ecology and biology of feral alfalfa (Medicago sativa L.) and its implications for novel trait confinement. Crit Rev Plant Sci 28: 6987 Google Scholar
Bagavathiannan, MV, Van Acker, RC, Friesen, L, Entz, MH, McLachlan, S (2006) Feral nature of alfalfa: what role they could play in transgenic trait movement? Proceedings of the Manitoba Agronomists Conference 2006. Winnipeg: The University of Manitoba Google Scholar
Biniak, BM, Aldrich, RJ (1986) Reducing velvetleaf (Abutilon theophrasti) and giant foxtail (Setaria faberi) seed production with simulated-roller herbicide applications. Weed Sci 34: 256259 Google Scholar
Buhler, DD, Mercurio, JC (1988) Vegetation management and corn growth and yield in untilled mixed-species perennial sod. Agron J 80: 454462 Google Scholar
Bullied, WJ, Entz, MH, Smith, SR Jr (1999) No-till alfalfa stand termination strategies: alfalfa control and wheat and barley production. Can J Plant Sci 78: 7183 Google Scholar
Carlson, JW (1928). Seasonal behavior of alfalfa flowers as related to seed production. J Am Soc Agron 20: 542556 Google Scholar
[CAST] Council for Agricultural Science and Technology (2008) Gene flow in alfalfa: biology, mitigation and potential impact on production. Ames, IA: CAST Special Publication no. 28Google Scholar
Claessen, D, Gilligan, CA, Lutman, PJW, van den Bosch, F (2005a) Which traits promote persistence of feral GM crops? Part 1: implications of environmental stochasticity. OIKOS 110: 2029 Google Scholar
Clay, PA, Griffin, JL (2000) Weed seed production and seedling emergence responses to late-season glyphosate applications. Weed Sci 48: 481486 Google Scholar
Dawson, JD (1992) Response of alfalfa (Medicago sativa) grown for seed production to glyphosate and SC-0224. Weed Technol 6: 378381 Google Scholar
Ellstrand, NC (2006) Genetic Engineering and Pollen Flow. Agricultural Biotechnology in California Series, Publication 8182. Pp. 14 Google Scholar
Fitzpatrick, S, Reisen, P, McCaslin, M (2003) Pollen-mediated gene flow in alfalfa: a three year summary of field research. In: Proceedings of 2003 Central Alfalfa Improvement Conference. Sacramento, CA: North American Alfalfa Improvement Conference Google Scholar
Free, JB (1993) Insect pollination of crops. 2nd edn. New York: Academic Press.Google Scholar
Glenn, S, Meyers, D (2006) Alfalfa management in no-tillage corn. Weed Technol 20: 8689 Google Scholar
Greene, SL, Kesoju, SR, Martin, RC, Kramer, M (2015) Occurrence of transgenic feral alfalfa (Medicago sativa subsp. sativa L.) in alfalfa seed production areas in the United States. PLoS ONE 10(12):e0143296. DOI: 10.1371/journal.pone. 0143296Google Scholar
Gressel, J (2005a) Crop Ferality and Volunteerism. Boca Raton, FL: CRC Press Google Scholar
Jenczewski, E, Prosperi, JM, Ronfort, J (1999a) Evidence for gene flow between wild and cultivated Medicago sativa (Leguminosae) based on allozyme markers and quantitative traits. Am J Bot 86: 677687 Google Scholar
Jha, P, Norsworthy, JK (2012) Influence of late-season herbicide applications on control, fecundity, and progeny fitness of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) biotypes from Arkansas. Weed Technol 26: 807812 Google Scholar
Kelley, KB, Wax, LM, Hager, AG, Riechers, DE (2005) Soybean response to plant growth regulator herbicides is affected by other postemergence herbicides. Weed Sci 53: 101112 Google Scholar
Kendrick, D, Pester, T, Horak, M, Rogan, G, Nickson, T (2005) Biogeographic survey of feral alfalfa populations in the U.S. during 2001 and 2002 as a component of an ecological risk assessment of Roundup Ready Alfalfa® . Proceedings of the North Central Weed Science Society Meeting. Kansas City, MO: North Central Weed Science Society. p 124 Google Scholar
Kesoju, SR, Greene, SL, Boydston, RA (2016) Genetically engineered alfalfa and feral alfalfa plants: what should growers know? A Pacific Northwest Extension Publication. PNW 685. Pp 19 Google Scholar
Knispel, AL, McLachlan, S, Van Acker, RC, Friesen, LF (2008) Gene flow and multiple herbicide resistance in escaped canola populations. Weed Sci 56: 7280 Google Scholar
Maun, MA, Cavers, PB (1969) Effects of 2,4-D on seed production and embryo development of curly dock. Weed Sci 17: 533536 Google Scholar
McGregor, SE (1976) Insect pollination of cultivated crop plants. Agriculture Handbook No. 496. Washington, DC: U.S. Department of Agriculture Google Scholar
Mikkelson, JR, Lym, RG (2011) Aminopyralid soil residues affect crop rotation in North Dakota soils. Weed Technol 25: 422429 Google Scholar
Moomaw, RS, Martin, AR (1976) Herbicides for no-tillage corn in alfalfa sod. Weed Sci 24: 449453 Google Scholar
[NAFA] National Alfalfa and Forage Alliance (2014) Coexistence for alfalfa hay exports markets. NAFA coexistence documents, June 2014. http://www.alfalfa.org/CSCoexistenceDocs.html. Accessed May 3, 2016Google Scholar
Prosperi, JM, Jenczewski, E, Angevain, M, Ronfort, J (2006) Morphologic and agronomic diversity of wild genetic resources of Medicago sativa L. collected in Spain. Gen Res Crop Evol 53: 843856 Google Scholar
Putnam, DH (2006) Methods to enable co-existence of diverse production systems involving genetically engineered alfalfa. Agricultural Biotechnololy California Series Publication 8193. Pp 19 Google Scholar
Renz, MJ (2010) Establishment of forage grasses and legumes after fall herbicide applications. Forage Grazinglands 8: 1 doi:10.1094/FG-2010-0806-01-RSGoogle Scholar
Smith, MA, Carter, PR, Imholte, AA (1992). Conventional vs. no-till corn following alfalfa/grass:timing of vegetation kill. Agron J 84: 780786 Google Scholar
St. Amand, P, Skenner, D, Peaden, R (2000) Risk of alfalfa transgene dissemination and scale-dependent effects. Theor Appl Genet 101: 107114 Google Scholar
Swanton, CJ, Chandler, K, Shrestha, A (1998) Control of established alfalfa (Medicago sativa L.) and red clover (Trifloium pretense L.) in a no-till corn (Zea mays L.) cropping sequence. Can J Plant Sci 78: 175177 Google Scholar
Thomas, WE, Pline-Srnic, WP, Viator, RA, Wilcut, JW (2005) Effects of glyphosate application timing and rate on sicklepod (Senna obtusifolia) fecundity. Weed Technol 19: 5561 Google Scholar
Thompson, L Jr, Egli, DB (1973) Evaluation of seedling progeny of soybeans with 2,4-D, 2,4-DB, and dicamba. Weed Sci 21: 141144 Google Scholar
[USDC] United States District Court (2007a) Preliminary injunction order report from the United States District Court for the Northern District of California, order No. C 06-01075 CRB, dated March 12. Pp 115 Google Scholar
USDC (2007b) Memorandum and order re: permanent injunction report from the United States District Court for the Northern District of Court) (2007c) Amended judgment report from California, order No. C 06-01075 CRB, dated May 3. Pp 1–15Google Scholar
Van Acker, RC (2007) The potential for the co-existence of GM and non-GM crops in Canada. Pages 153162 in Gulden, RH, Swanton, CJ, eds. The First Decade of Herbicide-Resistant Crops in Canada. Topics in Canadian Weed Science, Volume 4. Sainte-Anne-de Bellevue, QC: Canadian Weed Science Society Google Scholar
Vansell, GH, Todd, FE (1946) Alfalfa tripping by insects. J Am Soc Agron 38: 470488 Google Scholar
Walker, ER, Oliver, LR (2008) Weed seed production as influenced by glyphosate applications at flowering across a weed complex. Weed Technol 22: 318325 Google Scholar
Wolfenbarger, LL, Phifer, PR (2000) Biotechnology and ecology—the ecological risks and benefits of genetically engineered plants. Science 290: 20882093 Google Scholar