Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T05:22:20.507Z Has data issue: false hasContentIssue false

Effect of Simulated Indaziflam Drift Rates on Various Plant Species

Published online by Cambridge University Press:  20 January 2017

Matthew D. Jeffries*
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
Denis J. Mahoney
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
Travis W. Gannon
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620
*
Corresponding author's E-mail: [email protected].

Abstract

Indaziflam is a PRE herbicide for control of annual grass and broadleaf weeds in numerous settings, including managed roadsides, railroads, and noncroplands. There is a need for new and improved PRE herbicides for herbaceous vegetation management along roadsides; however, off-target crop injury via spray drift is a concern because of the close proximity of roadside applications to the wide array of crops grown throughout the southeastern United States where indaziflam is used. Greenhouse research was conducted to evaluate the effect of PRE and POST simulated indaziflam spray drift rates on the growth of cotton, bell pepper, soybean, squash, tobacco, and tomato. Simulated indaziflam spray drift rates were 100, 20, 10, 5, or 2.5% of a 73 g ai ha−1 application rate, whereas other herbicide treatments included for comparative purposes were applied at 10% of a typical North Carolina roadside vegetation management application rate. These included sulfometuron (4 g ai ha−1), aminocyclopyrachlor + metsulfuron (11 + 3.5 g ai ha−1), clopyralid + triclopyr (21 + 63 g ai ha−1), or aminopyralid (12 g ai ha−1). In general, plant growth responses varied among herbicides and application timings. Across all evaluated parameters, indaziflam at the 10% simulated drift rate adversely effected plant growth similarly or less than all other herbicides when applied PRE (squash and tomato), POST (bell pepper and soybean), and PRE or POST (cotton and tobacco). No clear trends were observed regarding indaziflam application timing, as PRE squash and tomato, and POST bell pepper and soybean applications were safer than their respective alternative timing, and no significant differences were detected between timings on cotton or tobacco. Across application timings, plant susceptibility to indaziflam-simulated spray drift rates ranked cotton < tobacco < tomato < squash < pepper < soybean. Finally, it should be noted that the lowest simulated indaziflam drift rate (2.5%) caused greater than 20% root mass reduction on cotton (POST), bell pepper (PRE and POST), soybean (PRE and POST), squash (PRE), and tomato (POST). Although this research supports indaziflam use along roadsides, it still poses an off-target plant injury risk. Future research should evaluate techniques to minimize spray drift from roadside pesticide applications.

Indaziflam es un herbicida PRE para el control de Poa annua y malezas de hoja ancha en numerosas situaciones, incluyendo bordes de caminos, vías de ferrocarriles y áreas no agrícolas. Existe una necesidad de tener herbicidas PRE nuevos y mejorados para el manejo de vegetación herbácea en bordes de caminos. Sin embargo, el daño a cultivos aledaños vía deriva de aspersión causa preocupación debido a la proximidad de las aplicaciones en los bordes de caminos a una gran variedad de cultivos producidos a lo largo del sureste de los Estados Unidos donde se usa indaziflam. Se realizó una investigación en invernaderos para evaluar el efecto de deriva simulada con dosis de indaziflam en PRE y POST sobre algodón, pimentón, soya, calabacín, tabaco, y tomate. Las dosis de deriva simulada de indaziflam fueron 100, 20, 10, 5, ó 2.5% de una dosis de aplicación de 73 g ai ha−1, mientras que otros tratamientos de herbicidas que se incluyeron para fines de comparación fueron aplicados a 10% de la dosis de aplicación típica para el manejo de vegetación en orillas de caminos en North Carolina. Se incluyó sulfometuron (4 g ai ha−1), aminocyclopyrachlor + metsulfuron (11 + 3.5 g ai ha−1), clopyralid + triclopyr (21 + 63 g ai ha−1), o aminopyralid (12 g ai ha−1). En general, las respuestas en el crecimiento vegetal variaron entre herbicidas y momentos de aplicación. En todos los parámetros evaluados, deriva simulada de indaziflam a 10% de la dosis afectó adversamente el crecimiento de las plantas en forma similar o menor que todos los demás herbicidas cuando se aplicó PRE (calabacín y tomate), POST (pimentón y soya), y PRE o POST (algodón y tabaco). No se observaron tendencias claras en relación al momento de aplicación de indaziflam ya que las aplicaciones PRE en calabacín y tomate, y POST en pimentón y soya, fueron tan seguras como sus respectivos momentos de aplicación alternativos, y no se detectaron diferencias significativas entre momentos de aplicación en algodón o tabaco. Al promediar momentos de aplicación, el nivel de susceptibilidad de las plantas a la deriva simulada de indaziflam fue algodón < tabaco < tomate < calabacín < pimentón < soya. Finalmente, debe ser notado que la dosis más baja de deriva simulada de indaziflam (2.5%) causó más de 20% de reducción en la masa de raíces en algodón (POST), pimentón (PRE y POST), soya (PRE y POST), calabacín (PRE), y tomate (POST). Aunque esta investigación sustenta el uso de indaziflam en bordes de caminos, este uso todavía representa un riesgo de daño a cultivos cercanos. Investigaciones futuras deberían evaluar técnicas que minimicen la deriva procedente de aplicaciones de plaguicidas en bordes de caminos.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alonso, DG, Koskinen, WC, Oliveira, RS Jr., Constantin, J, Mislankar, S (2011) Sorption–desorption of indaziflam in selected agricultural soils. J Agric Food Chem 59:1309613101 CrossRefGoogle ScholarPubMed
Anonymous (2011) Esplanade 200 SC® herbicide label. Bayer Environmental Science Publication No. 80522975A. Research Triangle Park, NC: Bayer. 5 pGoogle Scholar
Anonymous (2012) Governor's Logistics Task Force: Final Report. North Carolina Governor's Logistics Task Force. 202 pGoogle Scholar
Banks, PA, Schroeder, J (2002) Carrier volume affects herbicide activity in simulated spray drift studies. Weed Technol 16:833837 CrossRefGoogle Scholar
Barnes, CJ, Lavy, TL, Mattice, JD (1987) Exposure of non-applicator personnel and adjacent areas to aerially applied propanil. Bull Environ Contam Toxicol 39:126133 Google Scholar
Beketov, MA, Liess, M (2008) Potential of 11 pesticides to initiate downstream drift of stream invertebrates. Arch. Environ. Contam Toxicol 55:247253 Google Scholar
Brosnan, JT, Breeden, GK, McCullough, PE, Henry, GM (2012) PRE and POST control of annual bluegrass (Poa annua) with indaziflam. Weed Technol 26:4853 Google Scholar
Brosnan, JT, McCullough, PE, Breeden, GK (2011) Smooth crabgrass control with indaziflam at various spring timings. Weed Technol 25:363366 Google Scholar
Dietrich, H, Laber, B (2012) Inhibitors of cellulose biosynthesis. Pages 339369 in Modern Crop Protection Compounds. 2 edn, Volumes 1–3. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co Google Scholar
[EPA] U.S. Environmental Protection Agency (2009) Pesticide Registration (PR) Notice 2009-X Draft: Pesticide Drift Labeling. Washington, DC: U.S. Environmental Protection Agency File EPA-HG-OPP-2009-0628-0002Google Scholar
[EPA] U.S. Environmental Protection Agency (2010) Indaziflam Fact Sheet. Washington, DC: U.S. Environmental Protection Agency PC Code 080818. 32 pGoogle Scholar
[EPA] U.S. Environmental Protection Agency (2011) Drift Labeling Notice. Washington, DC: http://www.epa.gov/pesticides/ppdc/2011/october/session2-spraydrift.pdf. Accessed December 24, 2013Google Scholar
Everitt, JD, Keeling, JW (2009) Cotton growth and yield response to simulated 2,4-D and dicamba drift. Weed Technol 23:503506 Google Scholar
Gannon, T, Yelverton, F, Warren, L, Jeffries, M, Spak, D (2013) Indaziflam for weed control along warm-season roadsides in North Carolina. Proc Weed Sci Soc 109. http://wssaabstracts.com/public/16/abstract-109.html [Abstract]Google Scholar
Hall, FR (1991) Pesticide application technology and integrated pest management (IPM). Pages 135170 in Handbook of Pest Management in Agriculture. 2nd edn. Boca Raton, FL: CRC Press Google Scholar
Hensley, JB, Webster, EP, Blouin, DC, Harrell, DL, Bond, JA (2013) Response of rice to drift rates of glyphosate applied at low carrier volumes. Weed Technol 27:257262 Google Scholar
Lee, SJ, Mehler, L, Beekman, J, Diebolt-Brown, B, Prado, J, Lackovic, M, Waltz, J, Mulay, P, Schwartz, A, Mitchell, Y (2011) Acute pesticide illnesses associated with off-target pesticide drift from agricultural applications: 11 states, 1998–2006. Environ Health Perspect 119:11621169 Google Scholar
Lewis, DF, Hoyle, ST, Fisher, LR, Yelverton, FH, Richardson, RJ (2011) Effect of simulated aminocyclopyrachlor drift on flue-cured tobacco. Weed Technol 25:609615 Google Scholar
Marble, SC, Gilliam, CH, Wehtje, GR, Samuel-Foo, M (2013) Early postemergence control of yellow woodsorrel (Oxalis stricta) with residual herbicides. Weed Technol 27:347351 Google Scholar
Marple, ME, Al-Khatib, K, Peterson, DE (2008) Cotton injury and yield as affected by simulated drift on 2,4-D and dicamba. Weed Technol 22:609614 Google Scholar
Maybank, J, Yoshida, K, Grover, R (1978) Spray drift from agricultural pesticide applications. J Air Pollut Control Assoc 28:10091014 Google Scholar
O'Sullivan, JO, Thomas, RJ, Bouw, WJ (1999) Yield and injury effects on vegetable crops planted in flumetsulam-treated soil. Can J Plant Sci 79:417420 Google Scholar
Pfleeger, T, Olszyk, D, Lee, EH, Plocher, M (2011) Comparing effects of low levels of herbicides on greenhouse- and field-grown potatoes (Solanum tuberosum L.), soybeans (Glycine max L.), and peas (Pisum sativum L.). Environ Toxicol Chem 30:455468 Google Scholar
Pimentel, D (2005) Environmental and economic costs of the application of pesticides primarily in the United States. Environ Develop Sustain 7:229252 Google Scholar
Pimentel, D, Acquay, H, Biltonen, M, Rice, P, Silva, M, Nelson, J, Lipner, V, Giordano, S, Horowitz, A, D'Amore, M (1992) Environmental and economic costs of pesticide use. BioScience 42:750760 Google Scholar
PISC Report (2002) Spray Drift Management: Principles, Strategies, and Supporting Information. Primary Industries Standing Committee. Collingwood, Australia: CSIRO Publishing. 71 pGoogle Scholar
Roider, CA, Griffin, JL, Harrison, SA, Jones, CA (2008) Carrier volume affects wheat response to simulated glyphosate drift. Weed Technol 22:453458 Google Scholar
Snoo, GR, van der Poll, RJ (1999) Effect of herbicide drift on adjacent boundary vegetation. Agr Ecosyst Environ 73:16 Google Scholar
Snoo, GR, Witt, PJ (1998) Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms. Ecotox Environ Safe 41:112118 Google Scholar
Steele, RD, Torrie, JH, Dickey, DA (1997) Principles and Procedures of Statistics: A Biometrical Approach. 3rd edn. New York: WCB McGraw-Hill. 666 pGoogle Scholar
[USDA ERS] U.S. Department of Agriculture Economic Research Service. (2013) Farm Income and Wealth Statistics. Washington, DC: http://www.ers.usda.gov/data-products/farm-income-and-wealth-statistics/cash-receipts-bycommodity.aspx#P8a07b5b2aec448f980f6a6fe80b24e87_2_14iT0R0x33. Accessed December 24, 2013Google Scholar
[USDA NASS] U.S. Department of Agriculture National Agricultural Statistics Service. (2012) 2011 State Agriculture Overview—North Carolina. Washington, DC: http://www.nass.usda.gov/Statistics_by_State/Ag_Overview/AgOverview_NC.pdf. Accessed December 24, 2013Google Scholar