Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T08:57:38.408Z Has data issue: false hasContentIssue false

Ecological Mowing: An Option for Sustainable Weed Management in Young Citrus Orchards

Published online by Cambridge University Press:  11 April 2017

Rodrigo Martinelli*
Affiliation:
Master’s Degree Student and Scientific Researcher, Agronomic Institute (IAC), Sylvio Moreira Citriculture Center, Cordeirópolis, São Paulo State, Brazil
Patrícia A. Monquero
Affiliation:
Professor, Department of Natural Resources and Environmental Protection, Federal University of São Carlos (UFSCar), Araras, São Paulo State, Brazil.
Anastácia Fontanetti
Affiliation:
Professors, Department of Rural Development, Federal University of São Carlos (UFSCar), Araras, São Paulo State, Brazil
Patrícia M. Conceição
Affiliation:
Professors, Department of Rural Development, Federal University of São Carlos (UFSCar), Araras, São Paulo State, Brazil
Fernando A. Azevedo
Affiliation:
Master’s Degree Student and Scientific Researcher, Agronomic Institute (IAC), Sylvio Moreira Citriculture Center, Cordeirópolis, São Paulo State, Brazil
*
*Corresponding author’s E-mail: [email protected]

Abstract

The citrus yield in Brazil is not ranked among the best in the world, potentially due to inadequate management by citrus growers. The low adoption of conservation agriculture (CA) techniques and the improper application of herbicides are also well-known problems. Thus, this study evaluated the use of CA techniques, and two Urochloa species (ruzi grass and signal grass) were used as cover crops. Two different types of mowers (ecological, EM; conventional, CM) launched the mowed biomass into different positions within a young Tahiti acid lime orchard (up to four years old). In addition, the integration of glyphosate into this management system was evaluated, with (GLY) and without (NO GLY) glyphosate application. This experiment was conducted across three growing seasons (2011-2014), in Mogi Mirim, São Paulo State, Brazil. The cover crop biomass yields and the effects of the mowing treatments, weed density, vegetative growth and fruit yields of the Tahiti acid lime trees were evaluated. In terms of major results, signal grass produced higher biomass yield values (up to 64%) than ruzi grass; EM promoted higher mowed biomass values in the intra-row (up to 5.1 ton ha−1, 9.0 times higher than CM), and a higher canopy volume (up to 33% than CM). These results were enhanced when ruzi grass was associated with the EM (56% lower weed density; 126% higher fruit yield than CM) and with GLY (52% higher fruit yield than NO GLY); and EM with GLY (43% lesser weed density and 107% higher fruit yield than NO GLY). Overall, ruzi grass was a good cover crop because it provided less competition for the citrus trees, EM provided a mulch layer in the intra-row of the citrus trees, and associated with GLY, these approaches could provide options for an integrated and more sustainable weed management, primarily for young Tahiti acid lime orchards.

El rendimiento de los cítricos en Brasil no está entre los mejores del mundo, potencialmente debido al manejo inadecuado por parte de los productores de cítricos. La poca adopción de técnicas de agricultura de conservación (CA) y la aplicación inadecuada de herbicidas también son problemas bien conocidos. Por esto, este estudio evaluó el uso de técnicas CA y el uso de dos especies Urochloa (pasto ruzi; pasto braquiaria) como cultivos de cobertura. Dos tipos diferentes de cortadoras (ecológica, EM; convencional, CM) lanzaron la biomasa cortada en diferentes posiciones dentro de una plantación joven (hasta cuatro años de edad) de lima ácida Tahiti. Adicionalmente, se evaluó la integración de glyphosate en este sistema de manejo: con (GLY) y sin (NO GLY) aplicaciones de glyphosate. Este experimento se realizó a lo largo de tres temporadas de crecimiento (2011-2014), in Mogi Mirim, estado São Paulo, Brasil. Se evaluaron los rendimientos de biomasa del cultivo de cobertura y los efectos de los tratamientos de corta, la densidad de malezas, y el crecimiento vegetativo y los rendimientos de fruta de los árboles de lima ácida Tahiti. En términos de los resultados más importantes, pasto braquiaria produjo mayores rendimientos de biomasa (hasta 64%) que pasto ruzi; EM promovió mayores valores de biomasa entre hileras (hasta 5.1 ton ha−1, 9.0 veces mayor que CM), y un mayor volumen del dosel (hasta 33% más que CM). Estos resultados fueron mejorados cuando pasto ruzi se asoció con EM (56% menor densidad de malezas; 126% mayor rendimiento de fruta que CM) y con GLY (52% mayor rendimiento de fruta que NO GLY); y EM con GLY (43% menor densidad de malezas y 107% mayor rendimiento de fruta que NO GLY). En general, pasto ruzi fue un buen cultivo de cobertura porque causó menos competencia a los árboles de cítricos, EM brindó una capa de cobertura entre las hileras de los árboles de cítricos, y asociado con GLY, estas estrategias podrían brindar opciones para un manejo integrado y más sostenible de malezas, primariamente para plantaciones de lima ácida Tahiti.

Type
Weed Management-Major Crops
Copyright
© Weed Science Society of America, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Bradley Hanson, University of California, Davis.

References

Literature Cited

Abouziena, HF, Hafez, OM, El-Metwally, IM, Sharma, SD, Singh, M (2008) Comparison of weed suppression and mandarin fruit yield and quality obtained with organic mulches, synthetic mulches, cultivation, and glyphosate. HortScience 43:795799 CrossRefGoogle Scholar
Alvares, CA, Stape, JL, Sentelhas, PC, de Moraes, G, Leonardo, J, Sparovek, G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711728 CrossRefGoogle Scholar
Arruda, NG, Cantarutti, RB, Moreira, EM (1987) Tratamentos físicos-mecânicos e fertilização na recuperação de pastagens de Brachiaria decumbens em solos de Tabuleiro. Pasturas Tropicales 9:3639 Google Scholar
Azevedo, FA, Rosseto, MP, Schinor, EH, Martelli, IB, Pacheco, CA (2012) Influence of inter-rows management in sweet orange ‘Pera’ productivity. Rev Bras Frutic 34:134142 CrossRefGoogle Scholar
Barbosa, EG, Pivello, VR, Meirelles, ST (2008) Allelopathic evidence in Brachiaria decumbens and its potential to invade the Brazilian Cerrados. Braz Arch Biol Technol 51:625631 CrossRefGoogle Scholar
Bauer, MO, Pacheco, L, Chichorro, J, Vasconcelos, L, Pereira, D (2011) Produção e características estruturais de cinco forrageiras do gênero Brachiaria sob intensidades de cortes intermitentes. Ci Anim Bras, 12:10.5216/cab.v12i1.4817 Google Scholar
Blanco, HG, Oliveira, DA (1978) Estudos dos efeitos da época de controle do mato sobre a produção de citrus e a decomposição da flora daninha. Arq Inst Biol 45:2536 Google Scholar
Bogdan, AV (1977) Tropical Pasture and Fodder Plants. New York: Longman. 465 pGoogle Scholar
Bremer Neto, H, Victoria Filho, R, Mourão Filho, FAA, Menezes, GM, Canali, E (2008) Nutritional status and production of ‘Pêra’ sweet orange related to cover crops and mulch. Pesqui Agropecu Bras 43:2935 CrossRefGoogle Scholar
Campbell, CA, McConkey, BG, Zentner, RP, Selles, F, Curtin, D (1996) Long-term effects of tillage and crop rotations on soil organic C and N in a clay soil in southwestern Saskatchewan. Can J Soil Sci 76:395401 CrossRefGoogle Scholar
Carpenedo, V, Mielniczuk, J (1990) Estado de agregação e qualidade de agregados de latossolos roxos, submetidos a diferentes sistemas de manejo. Rev Bras Cienc Solo 14:99105 Google Scholar
Carvalho, JEB, Paes, JMV, Neves, CSVJ, Menegucci, JLP, Silva, JAA (2005) Práticas culturais. Pages 449482 in Mattos D Jr, De Negri JD, Pio RM & Pompeu J Jr, ed. Citros. Campinas: Instituto Agronômico/Fundag Google Scholar
Chiavegato, LG (1986) Biologia do ácaro Brevipalpus phoenicis em citros. Pesqui Agropecu Bras 21:813816 Google Scholar
[FAO] Food and Agriculture Organization (2009) The Lurking Menace of Weeds. http://www.fao.org/news/story/en/item/29402/icode/. Accessed July 06, 2015Google Scholar
[FAO] Food and Agriculture Organization (2015) FAOSTAT: Statistical Database. http://faostat.fao.org/site/567/default.aspx. Accessed May 02, 2015Google Scholar
[FAO] Food and Agriculture Organization (2016) Conservation Agriculture. http://www.fao.org/ag/ca/. Accessed April 26, 2016Google Scholar
Freebairn, DM, Boughton, WC (1985) Hydrologic effects of crop residue management practices. Aust J Soil Res 23:2355 CrossRefGoogle Scholar
[IBGE] Instituto Brasileiro de Geografia e Estatística (2013). Sistema IBGE de Recuperação Automática. http://www.sidra.ibge.gov.br/bda/tabela/protabl.asp?c=1613&z=p&o=18&i=p. Accessed July 02, 2013Google Scholar
Liebman, M, Dyck, E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92122 CrossRefGoogle ScholarPubMed
Mendel, K (1956) Rootstock-scion relationships in Shamouti trees on light soil. Israel J Agr Res 6:3560 Google Scholar
Reicosky, DC, Forcella, F (1998) Cover crop and soil quality interactions in agroecosystems. J Soil Water Conserv 53:224229 Google Scholar
Singh, M, Ramirez, AHM, Jhala, AJ, Malik, M (2012) Weed control efficacy and citrus response to flazasulfuron applied alone or in combination with other herbicides. Am J Plant Sci 3:520527 CrossRefGoogle Scholar
Singh, M, Sharma, SD (2008) Benefits of triazine herbicides and other weed control technology in citrus management. Pages 199209 in Lebaron HM, McFarland JE & Burnside OC, eds. The Triazine Herbicides – 50 Years Revolutionizing Agriculture. San Diego: Elsevier CrossRefGoogle Scholar
Souza, LS, Velini, ED, Martins, D, Rosolem, CA (1997) Possíveis efeitos alelopáticos de Brachiaria decumbens Stapf. sobre o desenvolvimento inicial de limão cravo (Citrus limonia Osbeck). Planta Daninha 15:122129 CrossRefGoogle Scholar
Souza, LS, Velini, ED, Martins, D, Rosolem, CA (2006) Efeito alelopático de capim-braquiária (Brachiaria decumbens) sobre o crescimento inicial de sete espécies de plantas cultivadas. Planta Daninha 24:657668 CrossRefGoogle Scholar
Teasdale, JR, Beste, CE, Potts, WE (1991) Response of weeds to tillage and cover crop residue. Weed Sci 39:195199 CrossRefGoogle Scholar
Teasdale, JR, Mohler, CL (2000) The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci 48:385392 CrossRefGoogle Scholar
Verdú, AM, Mas, MT (2007) Mulching as an alternative technique for weed management in mandarin orchard tree rows. Agron Sustain Dev 27:367375 CrossRefGoogle Scholar
Willey, RW (1979) Intercropping: its importance and research needs. Part 1. Competition and yield advantages. Field Crop Abstracts 32:110 Google Scholar