Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T15:19:56.522Z Has data issue: false hasContentIssue false

Early Postemergence Control of Yellow Woodsorrel (Oxalis stricta) with Residual Herbicides

Published online by Cambridge University Press:  20 January 2017

S. Christopher Marble*
Affiliation:
Department of Horticulture, Auburn University, Auburn, AL 36849
Charles H. Gilliam
Affiliation:
Department of Horticulture, Auburn University, Auburn, AL 36849
Glenn R. Wehtje
Affiliation:
Department of Agronomy and Soils, Auburn University, Auburn, AL 36849
Michelle Samuel-Foo
Affiliation:
University of Florida, Gainesville, FL 32611
*
Corresponding author's E-mail: [email protected].

Abstract

Three experiments were conducted to evaluate early POST control of yellow woodsorrel using PRE-applied herbicides. In experiment 1, yellow woodsorrel was seeded at two dates in a commercial pine-bark substrate and grown until reaching either the cotyledon–one-leaf (C-1L) or two- to four-leaf (2-4L) growth stage. The herbicides isoxaben, indaziflam, and dimethenamid-p were applied at these growth stages. Two rates of isoxaben and indaziflam provided yellow woodsorrel control (≥ 80% reduction in fresh weight [FW]) when applied at the C-1L stage; however, once yellow woodsorrel reached the 2-4L stage, indaziflam was the only herbicide that provided effective control at both rates tested. Experiments 2 and 3 were similar to experiment 1, except two labeled rates of dithiopyr were also evaluated. In experiment 2, all herbicides evaluated provided ≥ 90% reduction in FW of yellow woodsorrel at the C-1L stage. Although no differences in FW were observed among any of the herbicide treatments when yellow woodsorrel were treated at the 2-4L stage, control ratings indicated that indaziflam provided the most effective yellow woodsorrel control. Experiment 3 results also indicated that isoxaben, indaziflam, and dithiopyr controlled yellow woodsorrel (≥ 95% reduction in FW) when treatments were applied at the C-1L stage, whereas dimethenamid-p reduced shoot FW 70%. When yellow woodsorrel was treated after reaching the 2-4L stage, indaziflam provided the greatest control of any herbicide evaluated.

Se realizaron tres experimentos para evaluar el control POST temprano de Oxalis stricta usando herbicidas aplicados PRE. En el experimento 1, O. stricta se sembró en dos fechas en un sustrato comercial de corteza de pino y se dejó crecer hasta alcanzar los estados de desarrollo de cotiledón-una hoja (C-1L) o dos a cuatro hojas (2-4L). Los herbicidas isoxaben, indaziflam, y dimethenamid-p fueron aplicados en estos estados de desarrollo. Ambas dosis de isoxaben e indaziflam proveyeron control de O. stricta (≥80% reducción del peso fresco [FW] cuando se aplicó en el estado C-1L); sin embargo, una vez que O. stricta alcanzó el estado 2-4L, indaziflam fue el único herbicida que brindó control efectivo con ambas de las dosis evaluadas. Los experimentos 2 y 3 fueron similares al experimento 1, excepto que dos dosis de etiqueta de dithiopyr fueron también evaluadas. En el experimento 2, todo los herbicidas evaluados causaron ≥90% reducción de FW de O. stricta en el estado C-1L. Aunque no se observaron diferencias en FW entre ninguno de los tratamientos de herbicidas cuando O. stricta se trató en el estado 2-4L, las evaluaciones de control indicaron que indaziflam brindó el control más efectivo de esta maleza. Los resultados del experimento 3 indicaron que isoxaben, indaziflam, y dithiopyr controlaron O. stricta (≥95% reducción de FW) cuando los tratamientos fueron aplicados en el estado C-1L, mientras dimethenamid-p redujo el FW de la parte aérea 70%. Cuando O. stricta se trató después de alcanzar el estado 2-4L, indaziflam brindó el mayor control entre los herbicidas evaluados.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Altland, J. E., Gilliam, C. H., Edwards, J. H., Keever, G. J., Kessler, J. R., and Eakes, D. J. 2000. Effect of bittercress size and gallery rate on postemergence bittercress control. J. Environ. Hort. 18:128132.Google Scholar
Anonymous. 2009. Bayer CropScience Presents New Herbicidal Active Ingredient Indaziflam. http://www.bayercropscience.com/bcsweb/cropprotection.nsf/id/. F730899 C884F 24ADC1257558003E5E76. Accessed: February 2, 2012.Google Scholar
Anonymous. 2010a. Dimension® herbicide product label. Indianapolis, IN Dow AgroSciences. 16 p.Google Scholar
Anonymous. 2010b. Gallery® herbicide product label. Indianapolis, IN Dow AgroSciences. 11 p.Google Scholar
Anonymous. 2011. Tower® herbicide product label. Research Triangle Park, NC BASF. 18 p.Google Scholar
Brosnan, J. T., Breeden, G. K., McCullough, P. E., and Henry, G. M. 2012. PRE and POST control of annual bluegrass (Poa anna) with indaziflam. Weed Technol. 26:4853.Google Scholar
Brosnan, J. T., McCullough, P. E., and Breeden, G. K. 2011. Smooth crabgrass control with indaziflam at various spring timings. Weed Technol. 25:363366.Google Scholar
Fretz, T. A. 1972. Weed competition in container grown Japanese holly. HortScience. 7:485486.Google Scholar
Johnson, K. R. 2011. Sweet home Alabama? Immigration and civil rights in the “new” South. http://www.stanfordlawreview.org/online.sweet-home-alabama. Accessed: February 2, 2012.Google Scholar
Judge, C. A. and Neal, J. C. 2006. Preemergence and early postemergence control of selected container nursery weeds with Broadstar, OH2, and Snapshot TG. J. Environ. Hort. 24:105108.Google Scholar
Marble, S. C., Gilliam, C. H., Wehtje, G. R., Van Hoogmoed, A. J., and Palmer, C. 2011. Early postemergence control of spotted spurge in container production. J. Environ. Hort. 29:2934.Google Scholar
Martin, P. and Calvin, L. 2010. Immigration reform: what does it mean for agriculture and rural America? Appl. Econ. Perspect. Policy. 32:232253.Google Scholar
McCullough, P. E. 2010. Efficacy of two dithiopyr formulations for control of smooth crabgrass [Digitaria ischaemum (Shreb) Schreb. ex. Muhl.] at various stages of growth. HortScience. 45:961965.Google Scholar
Myers, D. F., Hanrahan, R., Michel, J., Monke, B., Mudge, L., Norton, L., Olsen, C., Parker, A., Smith, J., and Spak, D. 2009. Indaziflam/BCS-AA10717-A new herbicide for pre-emergent control of grasses and broadleaf weeds for turf and ornamentals. Proc. South. Weed Sci. Soc. 62:393.Google Scholar
Neal, J. C. and Derr, J. F. 2005. Weeds of container nurseries of the United States. Raleigh, NC North Carolina Assocation of Nurserymen. 15 p.Google Scholar
Reicher, Z. J., Weisenberger, D. V., and Throssell, C. S. 1999. Turf safety and effectiveness of dithiopyr and quinclorac for large crabgrass (Digitaria sanguinalis) control in spring seeded turf. Weed Technol. 13:253256.Google Scholar
Wehtje, G. E., Gilliam, C. H., Millar, M. E., and Altland, J. E. 2006. Foliar vs. root sensitivity of hairy bittercress (Cardamine hirsuta) to isoxaben. Weed Technol. 20:326333.CrossRefGoogle Scholar