Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T13:23:38.389Z Has data issue: false hasContentIssue false

Do Common Waterhemp (Amaranthus rudis) Seedling Emergence Patterns Meet Criteria for Herbicide Resistance Simulation Modeling?

Published online by Cambridge University Press:  20 January 2017

Brian J. Schutte*
Affiliation:
United States Department of Agriculture-Agricultural Research Service, Global Change and Photosynthesis Research Unit, 1102 S. Goodwin Avenue, Urbana, IL 61801
Adam S. Davis
Affiliation:
United States Department of Agriculture-Agricultural Research Service, Global Change and Photosynthesis Research Unit, 1102 S. Goodwin Avenue, Urbana, IL 61801
*
Corresponding author's E-mail: [email protected].

Abstract

A study was conducted to quantify the magnitude and sources of variation in common waterhemp temporal patterns of emergence over 1 yr. In 2008 and 2010, emergence patterns in the absence of soil disturbance were determined for replicated samples of maternal families (progeny from one individual) separately harvested during the previous year from four plants within each of four agricultural fields (16 maternal families yr−1) at a university research farm near Urbana, IL. Combining data across years, variance partitioning indicated that seed sample within maternal family explained 48% of total variation in the percentage of viable, buried seeds that produced seedlings. Differences within, rather than among, maternal families also accounted for large fractions (60 to 99%) of total variation in cumulative percentage emergence at specific points during the growing season. Within years, seed samples characterized by delayed or accelerated emergence patterns did not originate from specific maternal plants. These results indicate that common waterhemp seed populations are without strong maternal plant effects that limit emergence to narrow intervals within the overall emergence period. Thus, results of this study support the use of contemporary approaches for modeling herbicide resistance evolution in common waterhemp, which assume seedling cohorts contain offspring from all individuals occurring within the maternal population.

Se realizó un estudio para cuantificar la magnitud y las fuentes de variación en los patrones temporales de emergencia de Amaranthus rudis durante un año. En 2008 y 2010, se determinaron los patrones de emergencia en ausencia de perturbación del suelo de muestras replicadas de familias maternas (progenie de un individuo) cosechadas separadamente durante el año previo a partir de cuatro plantas por campo, provenientes de cuatro campos agrícolas (16 familias maternas por año), en una finca experimental universitaria cerca de Urbana, Illinois. Combinando los años, la partición de la varianza indicó que la muestra de semilla dentro de la familia materna explicó el 48% del total de la variación del porcentaje de semilla viable que produjo plántulas. Diferencias dentro y no entre familias maternas también fue responsable de gran parte (60 a 99%) del total de la variación en el porcentaje de emergencia acumulado en momentos específicos durante la temporada de crecimiento. Dentro de los años, muestras de semillas caracterizadas por mostrar patrones de emergencia retrasados o acelerados no se originaron a partir de plantas maternas específicas. Estos resultados indican que las poblaciones de semillas de A. rudis no tienen fuertes efectos maternos que limiten la emergencia a intervalos cortos dentro del periodo de emergencia general. De esta forma, los resultados de este estudio apoyan el uso de métodos contemporáneos para el modelaje de la evolución de resistencia a herbicidas en A. rudis, los cuales asumen que los cohortes de plántulas contienen progenie proveniente de todos los individuos que están presentes dentro de la población materna.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, DD, Roeth, FW, Martin, AR (1996) Occurrence and control of triazine-resistant common waterhemp (Amaranthus rudis) in field corn (Zea mays). Weed Technol 10:570575 Google Scholar
Andersson, L, Milberg, P (1998) Variation in seed dormancy among mother plants, populations and years of seed collection. Seed Sci Res 8:2938 Google Scholar
Bagavathiannan, M, Norsworthy, JK, Smith, KL, Neve, P (2013) Modeling the evolution of glyphosate resistance in barnyardgrass (Echinochloa crus-galli) in cotton-based production systems of the midsouthern United States. Weed Technol 27:475487 Google Scholar
Bell, MS, Hager, AG, Tranel, PJ (2013) Multiple resistance to herbicides from four site-of-action groups in waterhemp (Amaranthus tuberculatus). Weed Sci 61:460468 Google Scholar
Bensch, CN, Horak, MJ, Peterson, D (2003) Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci 51:3743 Google Scholar
Bernards, ML, Crespo, RJ, Kruger, GR, Gaussoin, R, Tranel, PJ (2012) A Waterhemp (Amaranthus tuberculatus) population resistant to 2,4–D. Weed Sci 60:379384 Google Scholar
Buhler, DD, Hartzler, RG (2001) Emergence and persistence of seed of velvetleaf, common waterhemp, woolly cupgrass, and giant foxtail. Weed Sci 49:230235 Google Scholar
Childs, DZ, Metcalf, CJE, Rees, M (2010) Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants. P Roy Soc B-Biol Sci 277:30553064 Google Scholar
Collavo, A, Strek, H, Beffa, R, Sattin, M (2013) Management of an ACCase-inhibitor-resistant Lolium rigidum population based on the use of ALS inhibitors: weed population evolution observed over a 7 year field-scale investigation. Pest Manag Sci 69:200208 CrossRefGoogle Scholar
Crawley, MJ (2007) The R Book Hoboken, NJ: John Wiley & Sons, Ltd CrossRefGoogle Scholar
Delye, C, Menchari, Y, Michel, S, Cadet, E, Le Corre, V (2013) A new insight into arable weed adaptive evolution: mutations endowing herbicide resistance also affect germination dynamics and seedling emergence. Ann Bot-London 111:681691 Google Scholar
Gallandt, ER (2006) How can we target the weed seedbank? Weed Sci 54:588596 Google Scholar
Goulart, ICGR, Matzenbacher, FO, Merotto, A (2012) Differential germination pattern of rice cultivars resistant to imidazolinone herbicides carrying different acetolactate synthase gene mutations. Weed Res 52:224232 Google Scholar
Gutterman, Y (2000) Maternal effects on seeds during development. Pages 5984 in Fenner, M, ed. Seeds: The Ecology of Regeneration in Plant Communities New York: CAB International Google Scholar
Hartzler, RG, Buhler, DD, Stoltenberg, DE (1999) Emergence characteristics of four annual weed species. Weed Sci 47:578584 Google Scholar
Hausman, NE, Singh, S, Tranel, PJ, Riechers, DE, Kaundun, SS, Polge, ND, Thomas, DA, Hager, AG (2011) Resistance to HPPD-inhibiting herbicides in a population of waterhemp (Amaranthus tuberculatus) from Illinois, United States. Pest Manag Sci 67:258261 CrossRefGoogle Scholar
Horak, MJ, Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48:347355 Google Scholar
Horak, MJ, Peterson, DE (1995) Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol 9:192195 CrossRefGoogle Scholar
Jasieniuk, M, BruleBabel, AL, Morrison, IN (1996) The evolution and genetics of herbicide resistance in weeds. Weed Sci 44:176193 CrossRefGoogle Scholar
Legleiter, TR, Bradley, KW (2008) Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci 56:582587 Google Scholar
Legleiter, TR, Bradley, KW (2009) Evaluation of herbicide programs for the management of glyphosate-resistant waterhemp (Amaranthus rudis) in Maize. Crop Prot 28:917922 Google Scholar
Leon, RG, Knapp, AD, Owen, MDK (2004) Effect of temperature on the germination of common waterhemp (Amaranthus tuberculatus), giant foxtail (Setaria faberi), and velvetleaf (Abutilon theophrasti). Weed Sci 52:6773 Google Scholar
Liu, JY, Davis, AS, Tranel, PJ (2012) Pollen biology and dispersal dynamics in waterhemp (Amaranthus tuberculatus). Weed Sci 60:416422 Google Scholar
Manalil, S, Renton, M, Diggle, A, Busi, R, Powles, SB (2012) Simulation modelling identifies polygenic basis of herbicide resistance in a weed population and predicts rapid evolution of herbicide resistance at low herbicide rates. Crop Prot 40:114120 CrossRefGoogle Scholar
Maxwell, BD, Roush, ML, Radosevich, SR (1990) Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol 4:213 Google Scholar
McMullan, PM, Green, JM (2011) Identification of a tall waterhemp (Amaranthus tuberculatus) biotype resistant to HPPD-Inhibiting herbicides, atrazine, and thifensulfuron in Iowa. Weed Technol 25:514518 Google Scholar
Mercer, KL, Alexander, HM, Snow, AA (2011) Selection on seedling emergence timing and size in an annual plant, Helianthus annuus (common sunflower, Asteraceae). Am J Bot 98:975985 Google Scholar
Nafziger, E, ed. 2009. Illinois Agronomy Handbook. 24 ed. Urbana, IL: University of Illinois Extension. Pp. 224 Google Scholar
Neve, P (2008) Simulation modelling to understand the evolution and management of glyphosate resistant in weeds. Pest Manag Sci 64:392401 Google Scholar
Neve, P, Diggle, AJ, Smith, FP, Powles, SB (2003) Simulating evolution of glyphosate resistance in Lolium rigidum II: past, present and future glyphosate use in Australian cropping. Weed Res 43:418427 CrossRefGoogle Scholar
Neve, P, Norsworthy, JK, Smith, KL, Zelaya, IA (2011) Modeling glyphosate resistance management strategies for Palmer amaranth (Amaranthus palmeri) in Cotton. Weed Technol 25:335343 Google Scholar
Owen, MJ, Michael, PJ, Renton, M, Steadman, KJ, Powles, SB (2011) Towards large-scale prediction of Lolium rigidum emergence. II. Correlation between dormancy and herbicide resistance levels suggests an impact of cropping systems. Weed Res 51:133141 Google Scholar
Peters, J, ed. 2000. Tetrazolium testing handbook. Contrib. No. 29 to the handbook on seed testing. Lincoln, NE: Association of Official Seed Analysts Google Scholar
Refsell, DE, Hartzler, RG (2009) Effect of tillage on common waterhemp (Amaranthus rudis) emergence and vertical distribution of seed in the soil. Weed Technol 23:129133 Google Scholar
Schutte, BJ, Regnier, EE, Harrison, SK (2008) The association between seed size and seed longevity among maternal families in Ambrosia trifida L. populations. Seed Sci Res 18:201211 CrossRefGoogle Scholar
Shoup, DE, Al-Khatib, K, Peterson, DE (2003) Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci 51:145150 Google Scholar
Simons, AM (2011) Modes of response to environmental change and the elusive empirical evidence for bet hedging. P Roy Soc B-Biol Sci 278:16011609 Google Scholar
Simons, AM, Johnston, MO (2006) Environmental and genetic sources of diversification in the timing of seed germination: Implications for the evolution of bet hedging. Evolution 60:22802292 Google Scholar
Sosnoskie, LM, Webster, TM, Culpepper, AS (2013) Glyphosate resistance does not affect Palmer amaranth (Amaranthus palmeri) seedbank longevity. Weed Sci 61:283288 CrossRefGoogle Scholar
Spokas, K, Forcella, F (2009) Software Tools for Weed Seed Germination Modeling. Weed Sci 57:216227 Google Scholar
Thinglum, KA, Riggins, CW, Davis, AS, Bradley, KW, Al-Khatib, K, Tranel, PJ (2011) Wide distribution of the waterhemp (Amaranthus tuberculatus) delta G210 PPX2 mutation, which confers resistance to PPO-inhibiting herbicides. Weed Sci 59:2227 Google Scholar
Thornby, DF, Walker, SR (2009) Simulating the evolution of glyphosate resistance in grains farming in northern Australia. Ann Bot-London 104:747756 Google Scholar
Tranel, PJ, Riggins, CW, Bell, MS, Hager, AG (2011) Herbicide resistances in Amaranthus tuberculatus: A call for new options. J Agr Food Chem 59:58085812 Google Scholar
Wiles, LJ, Barlin, DH, Schweizer, EE, Duke, HR, Whitt, DE (1996) A new soil sampler and elutriator for collecting and extracting weed seeds from soil. Weed Technol 10:3541 Google Scholar