Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T18:37:00.576Z Has data issue: false hasContentIssue false

Decision Support System for Optimized Herbicide Dose in Spring Barley

Published online by Cambridge University Press:  20 January 2017

Mette S⊘nderskov*
Affiliation:
Dept. of Agroecology, Aarhus University, Forsoegsvej 1, 4200 Slagelse, Denmark
Per Kudsk
Affiliation:
Dept. of Agroecology, Aarhus University, Forsoegsvej 1, 4200 Slagelse, Denmark
Solvejg K. Mathiassen
Affiliation:
Dept. of Agroecology, Aarhus University, Forsoegsvej 1, 4200 Slagelse, Denmark
Ole M. B⊘jer
Affiliation:
Dept. of Agroecology, Aarhus University, Forsoegsvej 1, 4200 Slagelse, Denmark
Per Rydahl
Affiliation:
Dept. of Agroecology, Aarhus University, Forsoegsvej 1, 4200 Slagelse, Denmark
*
Corresponding author's E-mail: [email protected].

Abstract

Crop Protection Online (CPO) is a decision support system, which integrates decision algorithms quantifying the requirement for weed control and a herbicide dose model. CPO was designed to be used by advisors and farmers to optimize the choice of herbicide and dose. The recommendations from CPO for herbicide application in spring barley in Denmark were validated through field experiments targeting three levels of weed control requirement. Satisfactory weed control levels at harvest were achieved by a medium control level requirement generating substantial herbicide reductions (∼ 60% measured as the Treatment Frequency Index (TFI)) compared to a high level of required weed control. The observations indicated that the current level of weed control required is robust for a range of weed scenarios. Weed plant numbers 3 wk after spraying indicated that the growth of the weed species were inhibited by the applied doses, but not necessarily killed, and that an adequate level of control was reached later in the season through crop competition.

Crop Protection Online (CPO, Protección de Cultivos en Línea) es un sistema de ayuda para la toma de decisión, el cual integra algoritmos que cuantifican el requerimiento de control de malezas y un modelo de dosis de herbicidas. CPO fue diseñado para ser usado por asesores y productores para optimizar la selección de herbicidas y dosis. Las recomendaciones de CPO para la aplicación de herbicidas en cebada de primavera en Dinamarca fueron validadas mediante experimentos de campo enfocados a tres niveles de requerimientos de control de malezas. Niveles satisfactorios de control de malezas al momento de la cosecha se alcanzaron con un nivel de requerimiento de control medio, lo que generó reducciones sustanciales de herbicidas (∼60% medido como el índice de frecuencia de tratamiento (TFI)) al compararse con el nivel de requerimiento de control de malezas alto. Las observaciones indicaron que el nivel actual de requerimientos de control de malezas es robusto para un rango amplio de escenarios de malezas. Los números de plantas de malezas, 3 semanas después de la aplicación, indicaron que el crecimiento de las especies de malezas fue inhibido por las dosis aplicadas, pero estas no necesariamente murieron, y que un nivel adecuado de control fue alcanzado después en la temporada debido a la competencia del cultivo.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andersson, L (1995) Effects of dose and application timing on the seed production of 3 weed species treated with MCPA or tribenuron-methyl. Weed Res 35:6774 Google Scholar
Andreasen, C, Stryhn, H (2008) Increasing weed flora in Danish arable fields and its importance for biodiversity. Weed Res 48:19 Google Scholar
Bennett, AC, Price, AJ, Sturgill, MC, Buol, GS, Wilkerson, GG (2003) HADSS (TM), pocket HERB (TM), and WebHADSS (TM): Decision aids for field crops. Weed Technol 17:412420 Google Scholar
Berti, A, Bravin, F, Zanin, G (2003) Application of decision-support software for postemergence weed control. Weed Sci 51:618627 Google Scholar
Berti, A, Zanin, G (1997) GESTINF: A decision model for post-emergence weed management in soybean (Glycine max (L) Merr). Crop Prot 16:109116 Google Scholar
Blackshaw, RE, Moyer, JR, Harker, KN, Clayton, GW (2005) Integration of agronomic practices and herbicides for sustainable weed management in a zero-till barley field pea rotation. Weed Technol 19:190196 Google Scholar
Bostrom, U, Fogelfors, H (2002) Long-term effects of herbicide-application strategies on weeds and yield in spring-sown cereals. Weed Sci 50:196203 Google Scholar
Boutin, CH, Lee, ET, Peart, PS, Batchelor, R, Maguire, J (2000) Effects of the sulfonylurea herbicide metsulfuron methyl on growth and reproduction of five wetland and terrestrial plant species. Environ Toxicol Chem 19:25322541 Google Scholar
Busi, R, Powles, SB (2009) Evolution of glyphosate resistance in a Lolium rigidum population by glyphosate selection at sublethal doses. Heredity 103:318325 Google Scholar
Caseley, JC (1989) Variations in foliar performance attributable to humidity, dew and rain effects. Asp Appl Biol 21:215225 Google Scholar
Doyle, P, Stypa, J (2004) Reduced herbicide rates — a Canadian perspective. Weed Technol 18:11571165 Google Scholar
Fernandez-Quintanilla, C, Leguizamon, ES, Navarrete, L, del Arco, MJS, Torner, C, de Lucas, C (2006) Integrating herbicide rate, barley variety and seeding rate for the control of sterile oat (Avena sterilis spp. ludoviciana) in central Spain. Eur J Agron 25:223233 Google Scholar
Green, JM, Jensen, JE, Streibig, JC (1995) Models to assess joint action of pesticide mixtures. Asp Appl Biol. 41:6168 Google Scholar
Hamill, AS, Weaver, SE, Sikkema, PH, Swanton, CJ, Tardif, FJ, Ferguson, GM (2004) Benefits and risks of economic vs. efficacious approaches to weed management in corn and soybean. Weed Technol 18:723732 Google Scholar
Jørgensen, LN, Kudsk, P (2006) Twenty years' experience with reduced agrochemical inputs: effects on farm economics, water quality, biodiversity and environment. 1–10 in: HGCA conference, Arable Crop Protection in the Balance: Profit and the Environment. Lincolnshire, UK HGCA Google Scholar
Klingaman, TE, King, CA, Oliver, LR (1992) Effect of application rate, weed species and weed stage of growth on imazethapyr activity. Weed Sci 40:227232 Google Scholar
Kudsk, P (1989) Experience with reduced herbicide doses in Denmark and the development of the concept of factor-adjusted doses In: Brighton Crop Protection Conference -Weeds. Brighton, UK, Vol 1–3, 545554 Google Scholar
Kudsk, P (1999) Optimising herbicide use — the driving force behind the development of the Danish decision support system. in Brighton Crop protection Conference—Weeds, Vols 1–3:737746 Google Scholar
Kudsk, P (2008) Optimising herbicide dose: a straightforward approach to reduce the risk of side effects of herbicides. Environmentalist 28:4955 Google Scholar
Kudsk, P, Kristensen, JL (1992) Effects of environmental factors on herbicide performance. Pages 173186 in Proceedings of First International Weed Control Congress. Australia: Weed Sience Society of Victoria Google Scholar
Manalil, S, Busi, R, Renton, M, Powles, SB (2011) Rapid evolution of herbicide resistance by low herbicide dosages. Weed Sci 59:210217 Google Scholar
Mathiassen, S, Kudsk, P, Jensen, LS (2013) First cases of herbicide resistance in Apera spica-venti in Scandinavia. Page 59 in Global Herbicide Resistance Challenge. Fremantle, Western Australia: AHRI Google Scholar
Netland, J, Torresen, KS, Rydahl, P (2005) Evaluation of the weed module in the Danish decision support system “Crop Protection Online” adapted to Norwegian conditions. in Proceedings of the 13th EWRS Symposium, 19–23 June 2005. Bari, Italy: European Weed Research Society, CD-ROM.Google Scholar
Nordblom, TL, Jones, RE, Medd, RW (2003) Economics of factor adjusted herbicide doses: a simulation analysis of best efficacy targeting strategies (BETS). Agric Sys 76:863882 Google Scholar
O'Donovan, JT, Blackshaw, RE, Harker, N, Clayton, GW, Moyer, JR, Dosdall, LM, Maurice, DC, Turkington, TK (2007) Integrated approaches to managing weeds in spring-sown crops in western Canada. Crop Prot 26:390398 Google Scholar
O'Donovan, JT, Harker, KN, Clayton, GW, Newman, JC, Robinson, D, Hall, LM (2001) Barley seeding rate influences the effects of variable herbicide rates on wild oat. Weed Sci 49:746754 Google Scholar
Pinheiro, J, Bates, D, DebRoy, S, Sarkar, D, The R Core team (2009) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–96 Google Scholar
R Development Core Team (2010) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing Google Scholar
Renton, M, Diggle, A, Manalil, S, Powles, S (2011) Does cutting herbicide rates threaten the sustainability of weed management in cropping systems? J Theor Biol 283:1427 Google Scholar
Rydahl, P (2003) A web-based decision support system for integrated management of weeds in cereals and sugarbeet. Bull OEPP 33:455460 Google Scholar
Rydahl, P, Hagelskjaer, L, Pedersen, L, Bojer, OQ (2003) User interfaces and system architecture of a web-based decision support system for integrated pest management in cereals. Bull OEPP 33:473481 Google Scholar
Salonen, J (1992) Efficacy of reduced herbicide doses in spring cereals of different competitive ability. Weed Res 32:483491 Google Scholar
Salonen, J (1993) Reducing herbicides in spring cereal production. Agric Sci Finland Suppl 2:741 Google Scholar
Spandl, E, Durgan, BR, Miller, DW (1997) Wild oat (Avena fatua) control in spring wheat (Triticum aestivum) and barley (Hordeum vulgare) with reduced rates of postemergence herbicides. Weed Technol 11:591597 Google Scholar
Sønderskov, M. 2011 Weed responses to sub-lethal herbicide doses and soil nitrogen level, PhD dissertation. Flakkebjerg: Aarhus University. 111 pGoogle Scholar
Terra, BRM, Martin, AR, Lindquist, JL (2007) Corn-velvetleaf (Abutilon theophrasti) interference is affected by sublethal doses of postemergence herbicides. Weed Sci 55:491496 Google Scholar
Ward, KI, Weaver, SE (1996) Response of eastern black nightshade (Solanum ptycanthum) to low rates of imazethapyr and metolachlor. Weed Sci 44:897902 Google Scholar
Warnes, GR (2011) gmodels: Various R programming tools for model fitting. Includes R source code and/or documentation contributed by Ben Bolker and Thomas Lumley and and Randall C Johnson. Contributions from Randall C. Johnson are Copyright (2005) SAIC-Frederick and Inc. Funded by the Intramural Research Program and of the NIH and National Cancer Institute and Center for Cancer Research under NCI Contract NO2001-CO-12400.Google Scholar