Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T21:57:20.021Z Has data issue: false hasContentIssue false

Cotton Response to CGA-362622 Applied Alone and in Combination with Selected Insecticides

Published online by Cambridge University Press:  20 January 2017

Brad W. Minton
Affiliation:
Syngenta Crop Protection, Cypress, TX 77429
Scott A. Senseman*
Affiliation:
Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474
J. Tom Cothren
Affiliation:
Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474
James M. Chandler
Affiliation:
Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474
Jerry W. Wells
Affiliation:
Syngenta Crop Protection, Greensboro, NC 27419
*
Corresponding author's E-mail: [email protected]

Abstract

CGA-362622 has been registered for postemergence (POST) over-the-top or POST-directed application in cotton. Research was conducted during 1998 in Texas to determine potential cotton phytotoxicity after POST application of CGA-362622 alone and with the insecticides acephate, dicrotophos, azinphos methyl, oxamyl, thiamethoxam, dimethoate, and malathion and to determine the response of four cotton cultivars to CGA-362622 applied alone. CGA-362622 applied with malathion injured cotton more than either pesticide applied alone, and yield was reduced in one of four locations when the pesticides were applied in mixture compared with nontreated cotton. Pyrithiobac or CGA-362622 mixed with malathion injured cotton similarly. The other insecticides tank mixed with CGA-362622 generally did not adversely affect cotton. The cotton cultivars ‘Delta and Pine Land 50’, ‘Paymaster 1220’, ‘Paymaster 1220RR’, and ‘Stoneville 474’ responded similarly to CGA-362622 applied alone or with insecticides.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allen, R. L. and Snipes, C. E. 1995. Interactions of foliar insecticides applied with pyrithiobac. Weed Technol. 9:512517.CrossRefGoogle Scholar
Anonymous. 2003. Envoke label SCP 1132A-L2 0903. Greensboro, NC: Syngenta Crop Protection.Google Scholar
Baerg, R. J., Barrett, M. R., and Polge, N. D. 1996. Insecticide and insecticide metabolite interactions with cytochrome P450 mediated activities in maize. Pestic. Biochem. Physiol. 55:1020.CrossRefGoogle ScholarPubMed
Baldwin, G. B., Panter, D. M., Seay, R. E., Corkern, C. B., and Reynolds, D. B. 1997. Response of selected cotton varieties to Staple® (pyrithiobac) applications. Proc. Beltwide Cotton Conf., Natl. Cotton Council, Memphis, TN. 1:765766.Google Scholar
Biediger, D. L., Baumann, P. A., Weaver, D. N., Chandler, J. M., and Merkle, M. G. 1992. Interactions between primisulfuron and selected soil-applied insecticides in corn (Zea mays). Weed Sci. 46:614617.Google Scholar
Bowling, C. C. and Hudgins, H. R. 1966. The effect of insecticides on the selectivity of propanil on rice. Weeds 14:94.CrossRefGoogle Scholar
Corkern, C. B., Reynolds, D. B., Griffin, J. L., Jordan, D. L., Miller, D. K., and Vidrine, P. R. 1999. Cotton sensitivity to pyrithiobac applied under two irrigation regimes. J. Cotton Sci. 7:8691.Google Scholar
Green, J. M. and Ulrich, J. F. 1994. Response of maize (Zea mays) inbreds and hybrid to rimsulfuron. Pestic. Sci. 31:187191.CrossRefGoogle Scholar
Hacskaylo, J. K., Walker, J. K. Jr., and Pires, E. G. 1964. Response of cotton seedlings to combinations of preemergence herbicides and systemic insecticides. Weeds 12:288291.CrossRefGoogle Scholar
Hatzios, K. K. and Penner, D. 1985. Interactions of herbicides with other agrochemicals in higher plants. Rev. Weed Sci. 1:163.Google Scholar
Holloway, J. C. Jr., Wells, J. W., and Hudetz, M. et al. 2000. CGA-362622 application timing, rates, and weed spectrum in cotton. Proc. South. Weed Sci. Soc. 53:240.Google Scholar
Holshouser, D. L., Chandler, J. M., and Smith, H. R. 1991. The influence of terbufos on the response of five corn (Zea mays) hybrids to CGA-136872. Weed Technol. 5:165168.CrossRefGoogle Scholar
Hudetz, M., Foery, W., Wells, J., and Soares, J. E. 2000. CGA-362622, a new low rate Novartis post-emergent herbicide for cotton and sugarcane. Proc. South. Weed Sci. Soc. 53:163166.Google Scholar
Jordan, D. L., Frans, R. E., and McClelland, M. R. 1993. DPX-PE350 does not interact with early-season insecticides in cotton (Gossypium hirsutum). Weed Technol. 7:9296.CrossRefGoogle ScholarPubMed
Kreuz, K. and Fonne'-Pfister, R. 1992. Herbicide-insecticide interaction in maize: malathion inhibits cytochrome P450-dependent primisulfuron metabolism. Pestic. Biochem. Physiol. 43:232240.CrossRefGoogle Scholar
Matsunaka, S. 1968. Propanil hydrolysis: inhibition in rice plants by insecticides. Science 160:13601367.CrossRefGoogle ScholarPubMed
Monks, D. W., Mullins, C. A., and Johnson, K. E. 1992. Response of sweet corn (Zea mays) to nicosulfuron and primisulfuron. Weed Technol. 6:280283.CrossRefGoogle Scholar
Morton, C. A. and Harvey, R. G. 1992. Sweet corn (Zea mays) hybrid tolerance to nicosulfuron. Weed Technol. 6:9196.CrossRefGoogle Scholar
Morton, C. A., Harvey, R. G., Kells, J. J., Lueshen, W. E., and Fritz, V. A. 1991. Effect of DPX-V9360 and terbufos on field and sweet corn (Zea mays) under three environments. Weed Technol. 5:130136.CrossRefGoogle Scholar
Nash, R. G. 1967. Phytotoxic pesticide interactions in soil. Agron. J. 59:227230.CrossRefGoogle Scholar
O'Sullivan, J., Thomas, R. J., and Bouw, W. J. 1998. Tolerance of sweet corn (Zea mays) cultivars to rimsulfuron. Weed Technol. 12:258261.CrossRefGoogle Scholar
Porpiglia, P. J., Rawls, E. K., Gillespie, G. R., and Peek, J. 1990. A method to evaluate the differential response of corn (Zea mays) to sulfonylureas. Weed Sci. Soc. Am. Abstr. 30:86.Google Scholar
Porterfield, D., Wilcut, J. W., and Askew, S. D. 2002a. Weed management with CGA-362622, fluometuron, and prometryn in cotton. Weed Sci. 50:642647.CrossRefGoogle Scholar
Porterfield, D., Wilcut, J. W., Clewis, S. B., and Edmisten, K. L. 2002b. Weed-free yield response of seven cotton (Gossypium hirsutum) cultivars to CGA-362622 postemergence. Weed Technol. 16:180183.CrossRefGoogle Scholar
Porterfield, D., Wilcut, J. W., Wells, J. W., and Clewis, S. B. 2003. Weed management with CGA-362622 in transgenic and nontransgenic cotton. Weed Sci. 51:10021009.CrossRefGoogle Scholar
Richardson, R. J., Wilson, H. P., Armel, G. R., and Hines, T. E. 2003. Mixtures of CGA 362622 and bromoxynil for broadleaf weed control in bromoxynil-resistant cotton (Gossypium hirsutum). Weed Technol. 17:496502.CrossRefGoogle Scholar
Shankle, M. W., Hayes, R. H., Reich, V. H., and Mueller, T. C. 1996. MSMA and pyrithiobac effects on cotton (Gossypium hirsutum) development, yield and quality. Weed Sci. 44:137142.CrossRefGoogle Scholar
Smith, M. C., McClelland, M. R., Carter, P. C., Corkern, C. B., and Reynolds, D. B. 1996. Weed control and cotton varietal sensitivity with Staple herbicide. Proc. Beltwide Cotton Conf., Natl. Cotton Council, Memphis, TN. 2:15361540.Google Scholar
Snipes, C. E. and Seifert, S. 2003. Influence of malathion timing on cotton (Gossypium hirsutum) response to pyrithiobac. Weed Technol. 17:266268.CrossRefGoogle Scholar
York, A. C. and Jordan, D. L. 1992. Cotton (Gossypium hirsutum L.) response to clomazone and insecticide combination. Weed Technol. 6:796800.CrossRefGoogle Scholar
York, A. C., Jordan, D. L., and Frans, R. E. 1991. Insecticides modify cotton (Gossypium hirsutum L.) response to clomazone. Weed Technol. 5:729735.CrossRefGoogle Scholar
Williams, W., Wehtje, G., and Walker, R. H. 2003. CGA-362622: soil behavior and foliar versus root absorption by torpedograss (Panicum repens). Weed Technol. 17:366372.CrossRefGoogle Scholar