Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T06:34:16.584Z Has data issue: false hasContentIssue false

Control of Morningglories (Ipomoea spp.) in Sugarcane (Saccharum spp.)

Published online by Cambridge University Press:  20 January 2017

Makhan Singh Bhullar
Affiliation:
Department of Agronomy, Punjab Agricultural University, Ludhiana 141004, Punjab, India
U. S. Walia
Affiliation:
Department of Agronomy, Punjab Agricultural University, Ludhiana 141004, Punjab, India
Surjit Singh
Affiliation:
Department of Agronomy, Punjab Agricultural University, Ludhiana 141004, Punjab, India
Megh Singh
Affiliation:
Weed Research Program, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850-2299
Amit J. Jhala*
Affiliation:
Weed Research Program, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850-2299
*
Corresponding author's E-mail: [email protected]

Abstract

Morningglories are summer annual or perennial dicots, and are troublesome weeds in sugarcane cultivated in northern India. If not controlled, they may compete with sugarcane, interfere in the harvest operation, and reduce yields. Managing morningglories in sugarcane continues to be a serious challenge for sugarcane growers. Field experiments were conducted during the 3-yr period from 2007 to 2009 to evaluate herbicides applied PRE and POST for control of morningglories in sugarcane. The herbicides applied PRE included diuron, metribuzin, and atrazine at 1.6, 1.4, and 1.0 kg ai ha−1, respectively, applied alone or followed by 2,4-D amine salt (0.58 or 1.16 kg ae ha−1) or 2,4-D sodium salt (0.8 or 1.6 kg ae ha−1) applied POST. Herbicides applied PRE controlled morningglories ≤ 87% at 15 d after treatment (DAT); however, control reduced to ≤ 56% at 90 DAT. Control improved when herbicides applied PRE were followed by POST application of 2,4-D amine or sodium salt. For example, diuron applied PRE followed by 2,4-D amine salt applied POST at any rate provided 100% control of morningglories at 15 and 30 DAT. At 90 d after POST application, control ranged from 68 to 82% with the PRE followed by POST herbicides, compared to 0% control when metribuzin or atrazine were applied PRE alone. The density and biomass of morningglories was also reduced to zero in treatments that included 2,4-D amine salt. The number of millable canes, cane height, and single cane weight was superior in PRE followed by POST herbicide treatments compared to herbicides applied PRE alone. Maximum cane yield was recorded for the treatments that included 2,4-D amine or sodium salt compared to only PRE treatments, and it was usually comparable with the nontreated weed-free control. It is concluded that a combination of PRE and POST herbicides were effective for control of morningglories; however, more research is required to evaluate other herbicides and their tank mix partners for control of morningglories in sugarcane.

Las Ipomoea son plantas dicotiledóneas perennes o anuales de verano y constituyen un problema en el cultivo de la caña de azúcar en el norte de la India. Si no se controlan pueden competir con la caña, interferir en la cosecha y reducir los rendimientos. El manejo de las Ipomoea en la caña de azúcar continúa siendo un reto serio para los productores. Experimentos de campo fueron realizados durante un período de tres años (de 2007 a 2009), para evaluar herbicidas aplicados PRE y POST para el control de Ipomoea en caña de azúcar. Los herbicidas aplicados PRE incluyeron diuron, metribuzin y atrazina a 1.6, 1.4, y 1.0 kg ia ha−1, respectivamente aplicados solos o seguidos por 2,4-D sal amina (0.58 o 1.16 kg ea ha−1) o 2,4-D sal sódica (0.8 o 1.6 kg ea ha−1), aplicados POST. Los herbicidas aplicados PRE controlaron las Ipomoea ≤ 87% a 15 días después del tratamiento (DAT); sin embargo, el control disminuyó a ≤ 56% a 90 DAT. El control mejoró cuando los herbicidas aplicados PRE fueron seguidos por aplicaciones POST de 2,4-D sal amina o 2,4-D sal sódica. Por ejemplo, diuron aplicado PRE seguido por 2,4-D sal amina aplicado POST a cualquier dosis, proporcionó 100% de control de las Ipomoea a 15 y 30 DAT. A 90 días después de la aplicación POST, el control varió de 68 a 82% con PRE seguido por los herbicidas POST, en comparación con 0% de control cuando metribuzin o atrazina fueron aplicados solos en PRE. La densidad y biomasa de las Ipomoea también se redujeron a cero en tratamientos que incluyeron 2,4-D sal amina. El número de cañas utilizables, la altura de caña, y el peso de una sola caña fueron superiores en PRE seguidos por tratamientos con herbicidas POST, comparado con solo herbicidas en PRE. El rendimiento máximo de caña fue registrado para los tratamientos que incluyeron 2,4-D amina o sal sódica comparado a únicamente tratamientos PRE, y fue usualmente comparable con el testigo no tratado libre de maleza. Se concluye que la combinación de herbicidas PRE y POST fue efectiva para el control de las Ipomoea; sin embargo, se requiere de más investigación para evaluar otros herbicidas y sus mezclas en tanque, para el control de las Ipomoea en cultivos de caña de azúcar.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, . 2001. Louisiana Suggested Chemical Weed Control Guide. Baton Rouge, LA Louisiana State University AgCenter and Louisiana Co-operative Extension Service Pub. 1565. 195 p.Google Scholar
Anonymous, . 2005. Louisiana Agricultural Summary. Baton Rouge, LA Louisiana State University AgCenter and Louisiana Cooperative Extension Service Pub SP2005-02. Pp. 1921.Google Scholar
Anonymous, . 2011a. Area, Production and Yield of Sugarcane along with Percentage of Coverage under Irrigation in India. New Delhi, India Ministry of Agriculture, Government of India. 48 p.Google Scholar
Anonymous, . 2011b. Modern Irrigation and Fertigation Methodologies for Higher Yields in Sugarcane. Bambhori, Jalgaon, India Jain Irrigation Systems Ltd., Jain Plastic Park. 45 p.Google Scholar
Ateh, C. M. and Harvey, R. G. 1999. Annual weed control by glyphosate in glyphosate-resistant soybean (Glycine max). Weed Technol. 13:394398.Google Scholar
Barker, M. A., Thompson, L. Jr., and Patterson, R. P. 1984. Effect of 2,4-DB on soybeans (Glycine max). Weed Sci. 32:299303.CrossRefGoogle Scholar
Egley, G. H. 1990. High temperature effects on germination and survival of weed seeds in soil. Weed Sci. 38:429435.Google Scholar
Elmore, C. D., Hurst, H. R., and Austin, D. F. 1990. Biology and control of morningglories (Ipomoea spp.). Rev. Weed Sci. 5:83114.Google Scholar
[FAO] Food and Agriculture Organization of the United Nations. 2008. Food and Agricultural Commodities Production: Sugarcane 2008. Rome, Italy: Food and Agriculture Organization of the United Nations. http://faostat.fao.org/site/339/default.aspx. Assessed: July 8, 2011.Google Scholar
Gomes, L. F., Chandler, J. M., and Vaughan, C. E. 1978. Aspects of germination, emergence and seed production of three Ipomoea taxa. Weed Sci. 26:245248.Google Scholar
Griffin, J. L. and Judice, W. A. 2009. Winter weed control in sugarcane. J. Am. Soc. Sugar Cane Technol. 29:128136.Google Scholar
Griffin, J. L., Viator, B. J., and Ellis, J. M. 2000. Tie-vine (morningglory) control at layby. Sugar Bull. 78:2335.Google Scholar
Jeyaraman, S., Karamathullah, J., Kannappan, K., and Padmanabhan, D. 2002. Weed management studies in sugarcane—a review. Co-operative Sugar 34:207217.Google Scholar
Jones, C. A. and Griffin, J. L. 2009. Red morning-glory (Ipomoea coccinea) control and competition in sugarcane. J. Am. Soc. Sugar Cane Technol. 29:2553.Google Scholar
Jordan, D. L., York, A. C., Griffin, J. L., Clay, P. A., Vidrine, P. R., and Reynolds, D. B. 1997. Influence of application variables on efficacy of glyphosate. Weed Technol. 11:354362.Google Scholar
Kathiresan, G., Avudaithai, S., and Kannappan, K. 2004. Controlling twining weed (Ipomoea sepiaria) in sugarcane. Sugar Tech 6:5358.Google Scholar
Loos, M. A. 1975. Phenoxyalkanoic acids. Pages 1101. In Kearney, P. C. and Kaufman, D. D., eds. Herbicides Chemistry, Degradation and Mode of Action. New York Marcel Dekker, Inc.Google Scholar
Marimuthu, R., Ahmed, S. N., and Grigharan, S. 2002. Control of Ipomoea spp. in sugarcane. Indian Sugar 51:807809.Google Scholar
Millhollon, R. W. 1988. Control of morningglory (Ipomoea coccinea) in sugarcane with layby herbicide treatments. J. Am. Soc. Sugar Cane Technol. 8:6266.Google Scholar
Odero, D. C. and Dusky, J. A. 2011. Weed Management in Sugarcane. Gainesville, FL University of Florida, Institute of Food and Agricultural Sciences, Florida Cooperative Extension Service Publication # SS-AGR-09. http://edis.ifas.ufl.edu/wg004. Accessed: July 3, 2011.Google Scholar
Ostrofsky, E. B., Traina, B. S., and Tuovinen, O. H. 1997. Variation in atrazine mineralization rates in relation to agricultural management practices. J. Environ. Qual. 26:647657.Google Scholar
Rangaiah, P. K., Durai, R., Ahmed, S. N., Pandian, B. J., and Rajasekaran, S. 1988. Weed Management in Sugarcane. Sugarcane Research Station, Cuddalore – 607 001. The 16th Annual Meeting of Sugarcane Research and Development Workers. Pennadam, Tamil Nadu, India Aruna Sugars Ltd.Google Scholar
Reynolds, D. B., Jordan, D. L., Vidrine, P. R., and Griffin, J. L. 1995. Broadleaf weed control with trifluralin plus flumetsulam in soybean (Glycine max). Weed Technol. 9:446451.Google Scholar
Richard, E. P. and Dalley, C. D. 2006. Sugarcane response to flumioxazin. Weed Technol. 20:695701.CrossRefGoogle Scholar
SAS Institute. 2009. SAS User's Guide: Statistics. Version 9.1. Cary, NC SAS Institute. 451 p.Google Scholar
Siebert, J. D., Griffin, J. L., and Jones, C. A. 2004. Residual effect of 2,4-D on whole stalk and billet planted sugarcane. Weed Technol. 18:304309.Google Scholar
Singh, A., Virk, A. S., and Singh, J. 2001. Efficacy of a new herbicide for the control of weeds in sugarcane. Sugar Tech 3:6364.Google Scholar
Thakar, C. and Singh, H. N. 1954. Nilkalamine (Ipomoea hederacea)—a menace to sugarcane. Hortic. Abstr. 24:530.Google Scholar
Vencill, W. K., Wilcut, J. W., and Monks, C. D. 1995. Efficacy and economy of weed management systems for sicklepod (Senna obtusifolia) and morningglory (Ipomoea spp.) control in soybean (Glycine max). Weed Technol. 9:456461.Google Scholar
Viator, B. J., Griffin, J. L., and Ellis, J. M. 2002. Red morningglory (Ipomoea coccinea) control with sulfentrazone and azafeniden applied at layby in sugarcane (Saccharum spp.). Weed Technol. 16:142148.Google Scholar
Webster, T. M. 2000. Weed survey—southern states. Proc. South. Weed Sci. Soc. 53:247274.Google Scholar
Webster, T. M. 2005. Weed survey—southern states: broadleaf crops subsection. Proc. South. Weed Sci. Soc. 58:291306.Google Scholar
Willis, J. C. 1966. A Dictionary of Flowering Plants and Ferns. Cambridge, UK Cambridge University Press. 1294 p.Google Scholar
Yassir, A., Lagacherie, B., Houot, S., and Soulas, G. 1999. Microbial aspects of atrazine bio-degradation in relation to history of soil treatment. Pestic. Sci. 55:799809.3.0.CO;2-P>CrossRefGoogle Scholar
York, A. C., Wilcut, J. W., Keene, M. M., and Walls, F. R. Jr. 1991. Soybean (Glycine max) response to postemergence herbicide mixtures containing 2,4-DB. Weed Technol. 5:4347.Google Scholar