Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T16:59:07.482Z Has data issue: false hasContentIssue false

Control of Horseweed (Conyza canadensis) with Growth Regulator Herbicides

Published online by Cambridge University Press:  20 January 2017

Greg R. Kruger
Affiliation:
Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, IN 47907
Vince M. Davis
Affiliation:
Department of Crop Sciences, 1102 South Goodwin Ave., University of Illinois, Urbana, IL 61801
Stephen C. Weller
Affiliation:
Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Dr., Purdue University, West Lafayette, IN 47907-1105
William G. Johnson*
Affiliation:
Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, IN 47907
*
Corresponding author's E-mail: [email protected].

Abstract

The growth regulator herbicides 2,4-D and dicamba are used to control glyphosate-resistant horseweed before crops are planted. With the impending release of 2,4-D–resistant and dicamba-resistant crops, use of these growth regulator herbicides postemergence will likely increase. The objective of this study was to determine the effectiveness of various growth regulators on Indiana horseweed populations. A greenhouse dose–response study was conducted to evaluate the effectiveness of 2,4-D ester, diglycolamine salt of dicamba, and dimethylamine salt of dicamba on control of four populations of horseweed in the greenhouse. Population 66 expressed twofold levels of tolerance to 2,4-D ester and diglycolamine salt of dicamba. Population 43 expressed an enhanced level of tolerance to diglycolamine salt of dicamba but not to the other herbicides. Diglycolamine salt of dicamba provided the best overall control of populations 3 and 34. Additionally, a field study was conducted to evaluate standard use rates of 2,4-D amine, 2,4-D ester, diglycolamine salt of dicamba, and dimethylamine salt of dicamba on control of various sized glyphosate-resistant horseweed plants. Control of plants 30 cm or less in height was 90% or greater for all four herbicides. On plants greater than 30 cm tall, diglycolamine salt of dicamba provided 97% control while 2,4-D amine provided 81% control. Diglycolamine salt of dicamba provided the highest level of control of glyphosate-resistant horseweed, followed by dimethylamine salt of dicamba, 2,4-D ester and 2,4-D amine, respectively. This research demonstrates that horseweed populations respond differently to the various salts of 2,4-D and dicamba, and it will be important to determine the appropriate use rates of each salt to control glyphosate-resistant horseweed.

Los herbicidas reguladores de crecimiento: 2,4-D y dicamba, son usados para controlar la Conyza canadensis resistente al glifosato, antes de la siembra. Con la inminente liberación de cultivos resistentes a 2,4-D y dicamba, el uso post-emergente de estos herbicidas reguladores del crecimiento probablemente se incrementaría. El objetivo de este estudio fue determinar la efectividad de varios reguladores del crecimiento en las poblaciones de Conyza canadensis en Indiana. Se llevó al cabo un estudio de respuesta a la dosificación en de invernadero para evaluar la efectividad del 2,4-D éster, sal diglycolamine de dicamba, y sal dimethylamine de dicamba en el control de cuatro poblaciones de Conyza canadensis en el invernadero. La población 66 manifestó doble nivel de tolerancia a 2,4-D éster y sal diglycolamine de dicamba. La población 43 reflejó un mejor nivel de tolerancia a la sal diglycolamine de dicamba pero no a los otros herbicidas. La sal diglycolamine de dicamba por encima de todos los herbicidas, proporcionó el mejor control de las poblaciones 3 y 34. Un estudio se llevó al cabo adicionalmente para evaluar las dosis estándar de 2,4-D amina, 2,4-D éster, sal diglycolamine de dicamba y sal dimethylamine de dicamba en el control de varios tamaños de plantas de Conyza canadensis resistentes al glifosato. El control de las plantas de 30 cms ó menos de altura fue del 90% o mayor para los cuatro herbicidas. En plantas de altura mayor a los 30 cms, la sal diglycolamine de dicamba proporcionó el 97% mientras que 2,4-D amina dio como resultado el 81% de control. La sal diglycolamine de dicamba rindió el nivel más alto de control de la Conyza canadensis resistente al glifosato, seguida por la sal dimethylamine de dicamba, 2,4-D éster y 2,4-D amina respectivamente. Esta investigación demuestra que las poblaciones de Conyza canadensis responden de diferente manera a diferentes sales de 2,4-D y dicamba y es importante determinar las dosis apropiadas para cada sal que permitan controlar la Conyza canadensis resistente al glifosato.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Behrens, M. R., Mutlu, N., Chakraborty, S., Dumitru, R., Jiang, W. Z., LaVallee, B. J., Herman, P. L., Clemente, T. E., and Weeks, D. P. 2007. Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:11851188.Google Scholar
Box, G. E. P., Hunter, W. G., and Hunter, J. S. 1978. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. New York: J. Wiley.Google Scholar
Brown, S. M. and Whitwell, T. 1988. Influence of tillage on horseweed, Conyza canadensis . Weed Technol. 11:189198.Google Scholar
Bruce, J. A. and Kells, J. J. 1990. Horseweed (Conyza canadensis) control in no-tillage soybeans (Glycine max) with preplant and preemergence herbicides. Weed Technol. 4:642647.Google Scholar
Davis, V. M., Gibson, K. D., Bauman, T. T., Weller, S. C., and Johnson, W. G. 2009a. Influence of weed management practices and crop rotation on glyphosate-resistant horseweed (Conyza canadensis) population dynamics and crop yield-years III and IV. Weed Sci. 57:417426.CrossRefGoogle Scholar
Davis, V. M., Gibson, K. D., and Johnson, W. G. 2008. A field survey to determine distribution and frequency of glyphosate-resistant horseweed (Conyza canadensis) in Indiana. Weed Technol. 22:331338.CrossRefGoogle Scholar
Davis, V. M. and Johnson, W. G. 2009. In-field and soil related factors that affect the presence and prediction of glyphosate-resistant horseweed (Conyza canadensis) collected from Indiana soybean fields. Weed Sci. 57:281289.Google Scholar
Davis, V. M., Kruger, G. R., Stachler, J. M., Loux, M. M., and Johnson, W. G. 2009b. Growth and seed production of horseweed (Conyza canadensis) populations resistant to glyphosate, ALS-inhibiting, and multiple (glyphosate + ALS-inhibiting) herbicides. Weed Sci. 57:494504.CrossRefGoogle Scholar
Gibson, K. D., Johnson, W. G., and Hillger, D. E. 2005. Farmer perceptions of problematic corn and soybean weeds in Indiana. Weed Technol. 19:10651070.Google Scholar
Gleason, H. A. and Cronquist, A. 1991. Manual of Vascular Plants of Notheastern United States and Adjacent Canada. Bronx, NY: New York Botanical Garden.Google Scholar
Heap, I. 2009. International survey of herbicide resistant weeds. Available at http://www.weedscience.com. Accessed: February 5, 2009.Google Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol. 21:840848.Google Scholar
Kruger, G. R., Davis, V. M., Weller, S. C., and Johnson, W. G. 2008. Response and survival of rosette-stage horseweed (Conyza canadensis) after exposure to 2,4-D. Weed Sci. 56:748752.Google Scholar
Kruger, G. R., Davis, V. M., Weller, S. C., Stachler, J. M., Loux, M. M., and Johnson, W. G. 2009a. Frequency, distribution, and characterization of horseweed biotypes with resistance to glyphosate and ALS-inhibiting herbicides. Weed Sci. 57:652659.CrossRefGoogle Scholar
Kruger, G. R., Johnson, W. G., Weller, S. C., Owen, M. D. K., Shaw, D. R., Wilcut, J. W., Jordan, D. L., Wilson, R. G., and Young, B. G. 2009b. U.S. grower views on problematic weeds and changes in weed pressure in glyphosate-resistant corn, cotton, and soybean cropping systems. Weed Technol. 22:162166.Google Scholar
Loux, M. M., Stachler, J. M., Johnson, W. G., Nice, G. R. W., and Bauman, T. T. 2009. Weed control guide for Ohio and Indiana. Columbus, OH: Ohio State University Extension.Google Scholar
Main, C. L., Steckel, L. E., Hayes, R. M., and Mueller, T. C. 2006. Biotic and abiotic factors influence horseweed emergence. Weed Sci. 54:11011105.Google Scholar
Saxton, A. M. 1998. A macro for converting mean separation output to letter groupings in Proc Mixed. Pages. 12431246. in. Proceedings of the 23rd SAS Users Group International. Cary, NC: SAS Institute.Google Scholar
Smisek, A. J. J. 1995. The evolution of resistance to paraquat in populations of Erigeron canadensis L. M.S. . London, Ontario: The University of Western Ontario. Pp. 1103.Google Scholar
Steckel, L. E., Craig, C. C., and Hayes, R. M. 2006. Glyphosate-resistant horseweed (Conyza canadensis) control with glufosinate prior to planting no-till cotton. Weed Technol. 20:10471051.Google Scholar
Trainer, G. D., Loux, M. M., Harrison, S. K., and Regnier, E. 2005. Response of horseweed biotypes to foliar applications of cloransulam-methyl and glyphosate. Weed Technol. 19:231236.CrossRefGoogle Scholar
Troyer, J. R. 2001. In the beginning: the multiple discovery of the first hormone herbicides. Weed Sci. 49:290297.Google Scholar
USDA-NASS 2008. Agricultural chemical use database. Available at http://www.pestmanagement.info/nass/. Accessed January 27, 2008.Google Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49:703705.CrossRefGoogle Scholar
VanGessel, M. J., Ayeni, A. O., and Majek, B. A. 2001. Glyphosate in full-season no-till glyphosate-resistant soybean: role of preplant applications and residual herbicides. Weed Technol. 15:714724.Google Scholar
Weaver, S. E. 2001. The biology of Canadian weeds. 115. Conyza canadensis . Can. J. Plant Sci. 81:867875.Google Scholar
Wright, T. R., Lira, J. M., Merlo, D. J., and Hopkins, N. 2005. Novel herbicide resistance genes. World patent Appl. No. 107,437.Google Scholar
Young, B. G. 2006. Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol. 20:301307.CrossRefGoogle Scholar