Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T14:37:22.353Z Has data issue: false hasContentIssue false

Comparisons Between Resistance Management Strategies for Insects and Weeds

Published online by Cambridge University Press:  12 June 2017

Fred Gould*
Affiliation:
Dep. Entomol., North Carolina State Univ., Raleigh, NC 27695-7634

Abstract

Problems with insecticide resistance have long plagued the field of economic entomology. Genetic, biochemical, and ecological information on insects has been used to develop strategies to slow the rate of insecticide resistance evolution. Documented cases of herbicide resistance have increased dramatically over the past 10 yr. This paper compares some aspects of insect and weed biology that can be used in determining whether or not resistance management strategies developed for insects are likely to be useful in combating herbicide resistance. Differences between insects and weeds in terms of genetic architecture, mating systems, and population structure lead to differences in the expected efficacy of some resistance management strategies. Because of the localized population structure of some weeds, it may be easier to get farmers to participate in herbicide resistance management programs and avoid a “tragedy of the commons.” A review of the herbicide resistance literature reveals a number of areas of basic research on ecology and genetics of weeds that could help in designing more appropriate resistance management programs.

Type
Symposium
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Allard, R. W., Babbel, G. R., Clegg, M. T., and Kahler, A. L. 1972. Evidence for coadaptation in Avena barbata . Proc. Natl. Acad. Sci. U.S.A. 69:30433048.Google Scholar
2. Burden, G. S., Lofgren, C. S., and Smith, C. N. 1960. Development of chlordane and malathion resistance in the German cockroach. J. Econ. Entomol. 53:11381139.Google Scholar
3. Caprio, M. A. and Tabashnik, B. E. 1992. Gene flow accelerates local adaptation among finite populations: simulating the evolution of insecticide resistance. J. Econ. Entomol. 85:611620.Google Scholar
4. Charlesworth, B. 1992. Evolutionary rates in partially self-fertilizing species. Am. Nat. 140:126148.Google Scholar
5. Coble, H. D. 1994. Weed science and changing times. Weed Sci. 8:420421.Google Scholar
6. Crow, J. F. and Kimura, M. 1970. An Introduction to Population Genetics Theory. Harper and Row, New York.Google Scholar
7. Daly, J. C. 1995. Ecology and genetics of insecticide resistance in Helicoverpa armigera interactions between selection and gene flow. Genetica (in press).Google Scholar
8. Ellstrand, N. C. 1992. Gene flow among seed plant populations. New Forests 6:241256.Google Scholar
9. Ellstrand, N. C. and Marshall, D. L. 1985. Interpopulation gene flow by pollen in wild radish, Raphanus sativus . Am. Nat. 126:606616.Google Scholar
10. Ellstrand, N. C. and Roose, M. L. 1987. Patterns of genotypic diversity in clonal plant species. Am. J. Bot. 74:123131.Google Scholar
11. Ellstrand, N. C., Devlin, B., and Marshall, D. L. 1989. Gene flow by pollen into small populations: data from experimental and natural stands of wild radish. Proc. Natl. Acad. Sci. U.S.A. 86:90449047.Google Scholar
12. Follett, P. A., Gould, F., and Kennedy, G. G. 1995. High-realism model of Colorado potato beetle (Coleoptera: Chrysomelidae) adaptation to permethrin. Environ. Entomol. 24:167178.Google Scholar
13. Georghiou, G. P. 1986. The magnitude of the resistance problem. p. 1443 in Glass, E. H. Chair. Pesticide resistance strategies and tactics for management. Nat. Acad. Sci Press, Washington, DC.Google Scholar
14. Gould, F. 1986. Simulation models for predicting durability of insect-resistant germ plasm: Hessian fly (Diptera: Cecidomyiidae)-resistant winter wheat. Environ. Entomol. 15:1123.Google Scholar
15. Gould, F. 1991. Evolutionary potential of crop pests. Am. Sci. 79:496507.Google Scholar
16. Gould, F. 1993. The spatial scale of genetic variation in insect populations, p. 6785 in Kim, K. C. and McPheron, B. A., eds. Evolution of Insect Pests. John Wiley, New York.Google Scholar
17. Hamrick, J. L. and Godt, M.J.W. 1990. Allozyme diversity in plant species. p. 4363 in Brown, A.H.D., Clegg, M. T., Kahler, A. L., and Weir, B. S., eds. Genetics, Breeding, and Genetic Resources. Sinauer Assoc., Sunderland, MA.Google Scholar
18. Holt, J. S., Powles, S. B., and Holtum, J.A.M. 1993. Mechanisms and agronomic aspects of herbicide resistance. Annu. Rev. Plant Physiol. Plant Molec. Biol. 44:203229.Google Scholar
19. Jarne, P. and Charlesworth, D. 1993. The evolution of the selfing rate in functionally hermaphrodite plants and animals. Annu. Rev. Ecol. Syst. 24:441466.CrossRefGoogle Scholar
20. Jasieniuk, M., Brule-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in agricultural weeds. Weed Sci. (in press).Google Scholar
21. Jasieniuk, M., Brule-Babel, A. L., and Morrison, I. N. 1994. Inheritance of trifluralin resistance in green foxtail {Setaria viridis). Weed Sci. 42:123127.Google Scholar
22. Jones, C. E. and Little, R. J., eds. 1983. Handbook of Experimental Pollination Biology. Sci. & Acad. Editions, New York. 558 p.Google Scholar
23. Korman, A. K., Mallet, J., Goodenough, J. L., Graves, J. B., Hayes, J. L., Hendricks, D. E., Luttrell, R., Pair, S. D., and Wall, M. 1993. Population structure in Heliothis virescens (Lepidoptera: Noctuidae): an estimate of gene flow. Ann. Entomol. Soc. Am. 86:182188.Google Scholar
24. Levin, D. A. and Kerster, H. W. 1974. Gene flow in seed plants. p. 239–220 in Dobzhansky, T., Hecht, M. K., and Steere, W. D., eds. Evolutionary Biology. Plenum Press, New York.Google Scholar
25. Li, W. 1983. Evolution of Duplicate Genes and Pseudogenes, p. 1437 in Nei, M. and Koehn, R. K., eds. Sinauer Assoc., Sunderland, MA.Google Scholar
26. Loveless, M. D. and Hamrick, J. L. 1984. Ecological determinants of genetic structure in plant populations. Annu. Rev. Ecol. Syst. 15:6595.Google Scholar
27. MacDonald, R. S., Surgeoner, G. A., Solomon, K. R., and Harris, C. R. 1983. Effect of four spray regimes on the development of permethrin and dichlorvos resistance in the laboratory by the house fly (Diptera: Muscidae). J. Econ. Entomol. 76:417422.Google Scholar
28. Macnair, M. R. 1991. Why the evolution of resistance to anthropogenic toxins normally involves majorgene changes: the limits to natural selection. Genetica 84:213219.Google Scholar
29. Macnair, M. R. and Cumbes, Q. R. 1989. The genetic architecture of interspecific variation in Mimulus . Genetics 122:211222.Google Scholar
30. Maxwell, B. D., Roush, M. L., and Radosevich, S. R. 1990. Prevention and management of herbicide resistant weeds. Proc. Ninth Austr. Weed Control Conf., Aug. 6, 1990, Adelaide, Aust., p. 260267.Google Scholar
31. Metcalf, R. L. 1989. Insect resistance to insecticides. Pestic. Sci. 26:333358.Google Scholar
32. Mulugeta, D., Maxwell, B. D., Fay, P. K., and Dyer, W. E. 1994. Kochia scoparia (L.) Schrad pollen dispersion, viability and germination. Weed Sci. 42:548552.Google Scholar
33. National Academy of Science. 1986. Pesticide Resistance. Strategies and Tactics for Management. Natl. Acad. Sci. Press, Washington, D.C. Google Scholar
34. National Academy of Science. 1989. Alternative Agriculture. Natl. Acad. Sci. Press, Washington, D.C. 448 p.Google Scholar
35. Oppenoorth, F. J. 1965. Biochemical genetics of insecticide resistance. Annu. Rev. Entomol. 10:185206.Google Scholar
36. Oppenoorth, F. J. 1985. Biochemistry and genetics of insecticide resistance. p. 731733 in Kerkut, G. A. and Gilbert, L. I., eds. Comprehensive Insect Physiology, Biochemistry, and Pharmacology. Pergamon, Oxford, U.K. Google Scholar
37. Pashley, D. P., Johnson, S. J., and Sparks, A. N. 1985. Genetic population structure of migratory moths: the fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 78:756762.Google Scholar
38. Plapp, F. W. 1976. Biochemical genetics of insecticide resistance. Annu. Rev, Entomol. 21:1769–197.Google Scholar
39. Pollak, E. 1987. On the theory of partially inbreeding finite populations. I. Partial selfing. Genetics 117:353360.Google Scholar
40. Rabb, R. L. and Kennedy, G. G. 1979. Movement of Highly Mobile Insects: Concepts and Methodology in Research. Univ. Graphics, N.C. State Univ., Raleigh.Google Scholar
41. Roush, R. T. 1989. Designing resistance management programs: how can you choose? Pestic. Sci. 423441.Google Scholar
42. Schmeske, D. W. and Lande, R. 1985. The evolution of self-fertilization and inbreeding depression in plants. II. Empirical observations. Evolution 39:4152.Google Scholar
43. Schmitt, J. 1980. Pollinator foraging behavior and gene dispersal in Senecio (Compositae). Evolution 34:934943.Google Scholar
44. Shaaltiel, Y., Chua, N.-H., Gepstein, S., and Gressel, J. 1988. Dominant pleiotropy controls enzymes co-segregating with paraquat resistance in Conyza bonariensis . Theor. Appl. Genet. 75:850856.Google Scholar
45. Stucky, J. M. 1985. Pollination system of sympatric Ipomoea hederacea and I. purpurea and the significance of interspecific pollen flow. Am. J. Bot. 72:3243.Google Scholar
46. Tabashnik, B. E. 1989. Managing resistance with multiple pesticide tactics: theory, evidence, and recommendations. J. Econ. Entomol. 82:12631269.Google Scholar
47. Van Rie, J., McGaughey, W. H., Johnson, D. E., Barnett, B. D., and Van Mellaert, H. 1990. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis . Science 247:7274.Google Scholar
48. Warwick, S. I. 1991. Herbicide resistance in weedy plants: physiology and population biology. Annu. Rev. Ecol. Syst. 22:95114.Google Scholar
49. Waser, N. M. 1982. A comparison of distances flown by different visitors to flowers of the same species. Oecologia (Berl.) 55:251257.Google Scholar
50. Whitham, T. G. 1983. Host manipulation of parasites: within-plant variation as a defense against rapidly evolving pests. p. 1560 in Denno, R. F. and McClure, M. S., eds., Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.Google Scholar
51. Wood, R. J. and Mani, G. S. 1981. The effective dominance of resistance genes in relation to the evolution of resistance. Pestic. Sci. 12:573581.Google Scholar