Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T17:00:26.076Z Has data issue: false hasContentIssue false

Characterization of Chlorsulfuron Resistant and Susceptible Kochia (Kochia scoparia)

Published online by Cambridge University Press:  12 June 2017

Curtis R. Thompson
Affiliation:
Dep. Plant, Soil, College of Agric., Univ. Idaho, Moscow, ID 83844-2339
Donald C. Thill
Affiliation:
Dep. Plant, Soil, College of Agric., Univ. Idaho, Moscow, ID 83844-2339
Carol A. Mallory-Smith
Affiliation:
Dep. Plant, Soil, College of Agric., Univ. Idaho, Moscow, ID 83844-2339
Bahman Shafii
Affiliation:
Dir. Stat. Prog., College of Agric., Univ. Idaho, Moscow, ID 83844-2339

Abstract

Kansas and North Dakota kochia populations identified as chlorsulfuron resistant (R) contained 20 and 30% susceptible (S) plants, respectively. Biotypes that were chlorsulfuron R or S were selected from each field R or S collection and selfed through three generations in the greenhouse. Chlorsulfuron at 7.6 and 17.8 g ai/ha suppressed shoot biomass of the Kansas and North Dakota R biotypes by 50%, respectively, which was a 30- and 105-fold greater dose than that required to reduce the respective S biotypes growth 50%. The R and S kochia biotypes are diploid with 2N = 18 chromosomes. Chlorsulfuron resistance is inherited in kochia as a dominant trait controlled by a single nuclear gene. Thus, the resistance trait can be spread by seed and pollen.

Type
Research
Copyright
Copyright © 1994 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Beyer, E. M., Duffy, M. J., Hay, J. V., and Schlueter, D. D. 1988. Sulfonylureas. p. 117189 in Kearney, P. C. and Kaufman, D. D., eds. Herbicide Chemistry, Degradation, and Mode of Action. Vol 3. Marcel Dekker, Inc., New York.Google Scholar
2. Chaleff, R. S. and Ray, T. B. 1984. Herbicide-resistant mutants from tobacco cell cultures. Science. 223:11481152.Google Scholar
3. Christoffoleti, P. J. and Westra, P. 1992. Competition and coexistence of sulfonylurea resistant and susceptible kochia (Kochia scoparia) biotypes in unstable environments. Weed Sci. Soc. Am. Abstr. 32:51.Google Scholar
4. Christopher, J. T. 1992. Mechanisms of resistance to herbicides which inhibit acetolactate synthase in annual ryegrass (Lolium rigidum). Ph.D. thesis. Univ. of Adelaide, Australia. p. 197214.Google Scholar
5. Conard, S. G. and Radosevich, S. R. 1979. Ecological fitness of Senecio vulgaris and Amaranthus retroflexus biotypes susceptible and resistant to atrazine. J. Appl. Ecol. 16:171177.Google Scholar
6. Cooper, G. O. 1935. Cytological studies in the Chenopodiaceae I. Microsporogenesis and pollen development. Bot. Gaz. 97:169178.Google Scholar
7. Gressel, J. and Segel, L. A. 1978. The paucity of plants evolving genetic resistant to herbicides: possible reasons and implications. J. Theor. Biol. 75:349371.CrossRefGoogle ScholarPubMed
8. Gressel, J. and Segel, L. A. 1982. Interrelating factors controlling the rate of appearance of resistance: The outlook for the future. p. 325347 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley & Sons, New York.Google Scholar
9. Gressel, J. and Segel, L. A. 1990. Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol. 4:186198.Google Scholar
10. Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., Thill, D. C., and Hoffman, D. L. 1992. DNA sequence variation in Domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci. 40:670676.Google Scholar
11. Harms, C. T., Montoya, A. L., Privalle, L. S., and Briggs, R. W. 1990. Genetic and biochemical characterization of corn inbred lines tolerant to the sulfonylurea herbicide primisulfuron. Theor. Appl. Genet. 80:353358.Google Scholar
12. Jacobs, B. F., Duesing, J. H., Antonovics, J., and Patterson, D. T. 1988. Growth performance of triazine-resistant and -susceptible biotypes of Solanum nigrum over a range of temperatures. Can. J. Bot. 66:847850.Google Scholar
13. Love, A. and Love, D. 1961. Chromosome numbers of central and northwest European plant species. Opera Botanica. Soc. Bot. Lund. 5:137. Almqvist and Wiksell, Stockholm, Sweden.Google Scholar
14. Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola) . Weed Technol. 4:163168.Google Scholar
15. Mallory-Smith, C. A., Thill, D. C., Dial, M. J., and Zemetra, R. S. 1990. Inheritance of sulfonylurea herbicide resistance in Lactuca spp. Weed Technol. 4:787790.CrossRefGoogle Scholar
16. Maxwell, B. D., Roush, M. L., and Radosevich, S. R. 1990. Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol. 4:213.Google Scholar
17. McSheffrey, S. A., McHughen, A., and Devine, M. D. 1992. Characterization of transgenic sulfonylurea-resistant flax (Linum usitatissimum). Theor. Appl. Genet. 84:480486.CrossRefGoogle ScholarPubMed
18. Miki, B. L., Labbe, H., Hattori, J., Ouellet, T., Gabard, J., Sunohara, G., Charest, P. J., and Iyer, V. N. 1990. Transformation of Brassica napus canola cultivars with Arabidopsis thaliana acetohydroxyacid synthase genes and analysis of herbicide resistance. Theor. Appl. Genet. 80:449458.Google Scholar
19. Mortimer, A. M., Ulf-Hansen, P. F., and Putwain, P. D. 1992. Modelling herbicide resistance—A study of ecological fitness. p. 283306 in Denholm, I., Devonshire, A. L., and Hollomons, D. W., eds. Resistance '91: Achievements and Developments in Combatting Pesticide Resistance. Elsevier Science Publishers Ltd., Essex, UK.Google Scholar
20. Mulugeta, D., Fay, P. K., Dyer, W. E., and Talbert, L. E. 1991. Inheritance to the sulfonylurea herbicides in Kochia scoparia . Proc. West. Soc. Weed Sci. 44:81.Google Scholar
21. Mulugeta, D., Fay, P. K., and Dyer, W. E. 1992. The role of pollen in the spread of sulfonylurea resistant Kochia scoparia . Weed Sci. Soc. Am. Abstr. 32:48.Google Scholar
22. Newhouse, K., Singh, B., Shaner, D., and Stidham, M. 1991. Mutations in corn (Zea mays L.) conferring resistance to imidazolinone herbicides. Theor. Appl. Genet. 83:6570.Google Scholar
23. Palm, H. L., Riggleman, J. D., and Allison, D. A. 1980. Worldwide review of the new cereal herbicide DPX-4189. Proc. Br. Crop Prot. Conf. Weeds 1:16.Google Scholar
24. Primiani, M. M., Cotterman, J. C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4:169172.Google Scholar
25. Ray, T. B. 1984. Site of action of chlorsulfuron. Plant Physiol. 75:827831.Google Scholar
26. Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93:5561.Google Scholar
27. Saari, L. L., Cotterman, J. C., and Thill, D. C. 1993. Mechanism of resistance for ALS-inhibitor herbicides in S. Powles, B. and Holtum, J. A. M., eds. Resistance to Herbicides in Plants. CRC Press, Inc., Boca Raton, FL. In press.Google Scholar
28. Sebastian, S. A. and Chaleff, R. S. 1987. Soybean mutants with increased tolerance for sulfonylurea herbicides. Crop Sci. 27:948952.Google Scholar
29. Sivakumaran, K., Mulugeta, D., Gerhardt, S. A., Fay., P. K., and Dyer, W. E. 1991. Characteristics of diverse sulfonylurea-resistant and susceptible Kochia scoparia accessions. Proc. West. Soc. Weed Sci. 44:82.Google Scholar
30. Stallings, G. P., Thill, D. C., and Mallory-Smith, C. A. 1993. Pollen-mediated gene flow of sulfonylurea-resistant kochia (Kochia scoparia) . Weed Sci. Soc. Am. Abstr. 33:180.Google Scholar
31. Streibig, J. C., Rudemo, M., and Jensen, J. E. 1993. Dose-response curves and statistical models. p. 2955 in Streibig, J. C. and Kudsk, P., eds. Herbicide Bioassays. CRC Press, Inc., Boca Raton, FL.Google Scholar
32. Swanson, E. B., Herrgesell, M. J., Amoldo, M., Sippell, D. W., and Wong, R. S. C. 1989. Microspore mutagenesis and selection: Canola plants with field tolerance to the imidazolinones. Theor. Appl. Genet. 78:525530.Google Scholar
33. Thill, D. C., Mallory-Smith, C. A., Saari, L. L., Cotterman, J. C., Primiani, M. M., and Saladini, J. L. 1991. Sulfonylurea herbicide resistant weeds: Discovery, distribution, biology, mechanism, and management. p. 115128 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Butterworth-Heinemann Ltd., Oxford, UK.Google Scholar
34. Thompson, C. R. and Thill, D. C. 1992. Sulfonylurea herbicide-resistant and -susceptible kochia (Kochia scoparia (L.) Schrad) growth rates and seed production. Weed Sci. Soc. Am. Abstr. 32:131.Google Scholar
35. Thompson, C. R. 1993. Biology of sulfonylurea herbicide-resistant and -susceptible kochia (Kochia scoparia L.). Ph.D. dissertation. Univ. of Idaho, Moscow, ID. p. 527.Google Scholar
36. Tsuchiya, T., Hang, A., Healy, W. E. Jr., and Hughes, H. 1987. Chromosome studies in the genus Alstroemeria. 1. Chromosome numbers in some cultivated varieties. Bot. Gaz. 148:519524.Google Scholar
37. Warwick, S.I. and Black, L. 1981. The relative competitiveness of atrazine susceptible and resistant populations of Chenopodium album and C. strictum . Can. J. Bot. 59:689693.Google Scholar
38. Witte, M. B. 1947. A comparative cytological study of three species of the Chenopodiaceae. Bull. Torrey. Bot. Club. 74:443452.Google Scholar
39. Wulff, H. D. 1936. Die polysomatie der Chenopodiaceen. Planta 26:275290.Google Scholar