Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T05:56:40.978Z Has data issue: false hasContentIssue false

Bioassay of the Herbicidal Activity of AAC-Toxin Produced by Alternaria alternata Isolated from Ageratina adenophora

Published online by Cambridge University Press:  20 January 2017

Sheng Qiang*
Affiliation:
Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
Ling Wang
Affiliation:
Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
Ran Wei
Affiliation:
Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
Bing Zhou
Affiliation:
Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
Shiguo Chen
Affiliation:
Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
Yunzhi Zhu
Affiliation:
Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
Yunfa Dong
Affiliation:
Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
Chuanfu An
Affiliation:
Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China
*
Corresponding author's E-mail: [email protected] or [email protected]

Abstract

Tenuazonic acid (TeA), a naturally occurring product of Alternaria alternata, a pathogen to croftonweed, was discovered to be a novel natural photosystem II (PSII) inhibitor. However, herbicidal activity of AAC-toxin, a metabolite of this fungus containing TeA as the main active ingredient, has not been evaluated systematically. In this study, we conducted activity-evaluation experiments in the laboratory, greenhouse, and field trials to assess the herbicidal potential of this fungal metabolite. AAC-toxin had high herbicidal activity on all species tested: croftonweed, large crabgrass, barnyardgrass, redroot pigweed, and eclipta. The AAC-toxin caused brown, leaf spot symptoms and leaf necrosis, subsequently killing the seedlings. When AAC-toxin was applied POST at 83 ml ai/ha, more than 95% of large crabgrass, barnyardgrass, and redroot pigweed plants were controlled 2 d after treatment in field trials. It can be concluded that AAC-toxin has broad-spectrum, rapid, and high herbicidal activity similar to that of paraquat and may have the potential to be developed as a microbe-based herbicide.

El ácido Tenuazonic (TeA), un ingrediente activo de la Alternaria alternata, produce un patógeno que actúa sobre la Eupatorium adenopphorum Spreng y ha sido descubierto como un nuevo inhibidor PSII natural. Sin embargo, la actividad herbicida de la toxina AAC, metabolizada por este hongo y que contiene TeA como ingrediente activo, no ha sido evaluada sistemáticamente. En este estudio, llevamos al cabo experimentos activos en el laboratorio, el invernadero y en el campo, para poder evaluar el potencial herbicida de este hongo. Los resultados mostraron que la toxina AAC tiene una alta actividad herbicida para todas las malezas estudiadas: Eupatorium adenopphorum Spreng, Digitaria sanguinalis L., Echinochloa crusgalli, Amaranthus retroflexus, y Eclipta prostrata L. La toxina AAC provocó en las hojas de estas malezas una necrosis café y marchitamiento, y subsecuentemente causó la muerte de los vástagos. Cuando la toxina AAC fue POST - aplicada a 82.95 ml ia/hm2, grandes densidades de Digitaria sanguinalis L., Echinochloa crusgalli, y Amaranthus retroflexus fueron controladas en más del 95% a los 2 días después del tratamiento (DAT) en los estudios de campo. Se puede concluir que la toxina AAC tiene un amplio espectro así como una actividad herbicida mejor y más rápida, y que es similar pero sin una acción mecánica diferente al paraquat, y que puede tener potencial para ser desarrollada como un herbicida micro.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbas, H. K., Vesonder, R. F., Boyette, C. D., and Peterson, S. W. 1993. Phytotoxicity of AAL-toxin and other compounds by Alternaria alternata to jimsonweed (Datura stramonium). Can. J. Bot 71:155160.Google Scholar
Baker, N. R. and Percival, M. P. 1991. Herbicides. Pages 11. In Barber, J. Topics in Photosynthesis. Volume 10. Amsterdam: Elsevier.Google Scholar
Chelkowski, J. and Visconti, A. 1992. Alternaria: Biology, Plant Diseases and Metabolites. Amsterdam: Elsevier. 449541.Google Scholar
Chen, S. G., Dai, X. B., Qiang, S., and Tang, Y. L. 2005. Effect of a nonhost-selective toxin from Alternaria alternata on chloroplast-electron transfer activity in Eupatorium adenophorum . Plant Pathol 54:671677.Google Scholar
Chen, S. G., Dai, X. B., Qiang, S., and Xu, X. M. 2008. Action of tenuazonic acid, a natural phytotoxin, on photosystem II of spinach. Environ. Exp. Bot 62:279289.Google Scholar
Chen, S. G., Dai, X. B., Xu, X. M., Yang, C. L., and Qiang, S. 2007. Identification of tenuazonic acid as a novel type of natural photosystem II inhibitor binding in QB-site of Chlamydomonas reinhardtii . Biochim. Biophys. Acta 1767:306318.Google Scholar
Janardhanan, K. K. and Husain, A. 1984. Phytotoxic activity of tenuazonic acid isolated from Alternaria alternata (Fr.) Keissler causing leaf blight of Datura innoxia Mill. and its effect on host metabolism. J. Phytopathol. (Berl.) 111:305311.Google Scholar
Kaczka, E. A., Gitterman, C. O., Dulaney, E. L., Smith, M. C., Hendlin, D., Woodruff, H. B., and Folkers, K. 1964. Discovery of inhibitory activity of tenuazonic acid for growth of human adenocarcinoma-1. Biochem. Biophys. Res. Commun 14:5457.Google Scholar
Meronuck, R. A., Steele, J. A., Mirocha, C. J., and Christensen, C. M. 1972. Tenuazonic acid, a toxin produced by Alternaria alternata . Appl. Environ. Microbiol 23:613617.Google Scholar
Nishimura, S. and Kohmoto, K. 1983. Host-specific toxins and chemical structures from Alternaria species. Ann. Rev. Phytopathol 21:87116.Google Scholar
Pedras, M. S. C., Biesenthal, C. J., and Zaharia, I. L. 2000. Comparison of the phytotoxic activity of the phytotoxin destruxin B and four natural analogs. Plant Sci 156:185192.Google Scholar
Qiang, S., Summerell, B. A., and Li, Y. H. 1999a. Pathogenicity of Alternaria alternata on crofton weed (Eupatorium adenophorum). Pages 556561. in. Proceedings of the 17th Asian-Pacific Weed Science Society Conference. Bangkok, Thailand Weed Science Society of Thailand.Google Scholar
Qiang, S., Wan, Z. X., Dong, Y. F., and Li, Y. H. 1999b. Phytotoxicity of crude metabolites produced by Alternaria alternata to crofton weed. Pages 158165. in. Proceedings of the Sustainable Management of Weeds Meeting the 21st Century in China. Nanning, China: Guangxi Nationality.Google Scholar
Rosett, B. T., Sankhala, R. H., Stickings, C. E., Taylor, M. E. U., and Thomas, R. 1957. Studies in the biochemistry of micro-organisms, 103: metabolites of Alternaria tenuis Auct. : culture filtrate products. Biochem. J. 67:390400.Google Scholar
Stickings, C. E. 1959. Studies in the biochemistry of microorganisms, 106: metabolites of Alternaria tenuis Auct. : the structure of tenuazonic acid. Biochem. J. 72:332340.Google Scholar
Wan, Z. X. 2001. Pathogenicity to Eupatorium adenophorum and the bioassay methods of Alternaria alternata toxin. Chin. J. Hubei Inst. Nationalities Nat. Sci 19:2023.Google Scholar
Wan, Z. X., Qiang, S., and Wu, Y. Y. 2001a. Separation and activity determination of Alternaria alternata toxin. Chin. J. Beihua Univ. Nationalities Nat. Sci 2:428430.Google Scholar
Wan, Z. X., Qiang, S., Xu, S. C., Shen, Z. G., and Dong, Y. F. 2001b. Culture conditions for production of phytotoxin by Alternaria alternata and plant range of toxicity. Chin. J. Biol. Control 17:1015.Google Scholar
Zhou, B. and Qiang, S. 2007. Degradation of tenuazonic acid from Alternaria alternata in soil. Am. Eurasian J. Agric. Environ. Sci 26:572576.Google Scholar
Zonno, M. C. and Vurro, M. 1999. Effect of fungal toxins on germination of Striga hermonthica seeds. Weed Res 39:1520.Google Scholar