Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-21T19:37:34.407Z Has data issue: false hasContentIssue false

Bermudagrass (Cynodon dactylon) Control in Sunflower (Helianthus annuus), Soybean (Glycine max), and Potato (Solanum tuberosum) with Postemergence Graminicides

Published online by Cambridge University Press:  12 June 2017

Francisco Bedmar*
Affiliation:
Departamento de Producción Vegetal, Facultad de Ciencias Agrarias-UNMDP, C.C. 276, 7620 Balcarce, Argentina

Abstract

Field experiments were conducted from 1989 to 1992 in Balcarce, Tandil, and San Cayetano, all in Buenos Aires province (Argentina), to evaluate clethodim, fenoxaprop-P-ethyl, fluazifop-P, haloxyfop, propaquizafop, and quizalofop-P-ethyl for bermudagrass control in sunflower, soybean, and potato. The highest levels of bermudagrass control 60 days after treatment (DAT) were generally obtained with fenoxaprop-P-ethyl, haloxyfop, propaquizafop, and quizalofop-P-ethyl. Late season bermudagrass control, based on biomass of stolons and rhizomes, suggested that the most consistent treatments in potato and sunflower were haloxyfop at 180 g ai/ha and quizalofop-P-ethyl at 54 g ai/ha. In soybean, clethodim at 336 g ai/ha, haloxyfop at 180 g/ha, propaquizafop at 100 g ai/ha, and quizalofop-P-ethyl at 54 g/ha provided the greatest reductions in bermudagrass biomass. All of the postemergence (POST) graminicide treatments increased crop yields when compared to a nontreated check. However, little or no difference in yield was obtained when herbicide rate was increased.

Type
Research
Copyright
Copyright © 1997 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Black, C. C., Chen, T., and Brown, R. H. 1969. Biochemical basis for plant competition. Weed Sci. 17:338344.Google Scholar
Brewster, B. D. and Spinney, R. L. 1989. Control of seedling grasses with postemergence grass herbicides. Weed Technol. 3:3943.Google Scholar
Brown, S. M., Chandler, J. M., and Bridges, D. C. 1987. Bermudagrass (Cynodon dactylon) and johnsongrass (Sorghum halepense) ecotype response to herbicides. Weed Technol. 1:221225.CrossRefGoogle Scholar
Bryson, C. T. and Wills, G. D. 1985. Susceptibility of bermudagrass (Cynodon dactylon) biotypes to several herbicides. Weed Sci. 33:848852.Google Scholar
CASAFE. 1995. Guía de productos fitosanitarios para la República Argentina. Séptima Edición. Cámara de Sanidad Agropecuaria y Fertilizantes República Argentina, Buenos Aires. 1343 p.Google Scholar
Fernandez, O. N. and Bedmar, F. 1992. Fundamentos para el manejo integrado del gramón (Cynodon dactylon). Est. Exp. Agrop. Balc. Boletín Técnico 105. 26 p.Google Scholar
Grichar, W. J. 1995. Comparison of postemergence herbicides for common bermudagrass (Cynodon dactylon) control in peanut (Arachis hypogaea). Weed Technol. 9:825828.Google Scholar
Grichar, W. J. and Boswell, T. E. 1989. Bermudagrass (Cynodon dactylon) control with postemergence herbicides in peanut (Arachis hypogaea). Weed Technol. 3:267271.Google Scholar
Harker, K. N. 1995. Short-term split application of grass-specific herbicides on quackgrass (Elytrigia repens) under field conditions. Weed Technol. 9:710715.Google Scholar
Hicks, C. P. and Jordan, T. N. 1984. Response of bermudagrass (Cynodon dactylon), quackgrass (Agropyron repens), and wirestem muhly (Mublenbergia frondosa) to postemergence grass herbicides. Weed Sci. 32:835841.Google Scholar
Holm, L., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds: Distribution and Biology. Honolulu: University Press Hawaii. 609 p.Google Scholar
Horowitz, M. 1972. Development of Cynodon dactylon (L.) Pers. Weed Res. 12:207220.Google Scholar
Johnson, W. G. and Frans, R. E. 1991. Johnsongrass (Sorghum halepense) control in soybeans (Glycine max) with postemergence herbicides. Weed Technol. 5:8791.Google Scholar
Kells, J. J., Meggitt, W. F., and Penner, D. 1984. Absorption, translocation, and activity of fluazifop-butyl as influenced by plant growth stage and environment. Weed Sci. 32:143149.CrossRefGoogle Scholar
Leaden, M. I., Bedmar, F., Pereyra, V. R., Farizo, C., and Cardinali, F. 1983. Relevamiento de malezas en cultivas de girasol en el Centro-Sudeste de la Provincia de Buenos Aires. Malezas 11:200208.Google Scholar
Mitich, L. W. 1989. Bermudagrass. Weed Technol. 3:433435.Google Scholar
Moreira, I. 1975. Propagaçao por semente do Cynodon dactylon (L.) Pers., Anais Inst. Sup. Agron. Univ. Tec. Lisboa 35:95112.Google Scholar
Schmidt, R. E. and Blaser, R. E. 1969. Effect of temperature, light and nitrogen on growth and metabolism of “Tifgreen” bermudagrass (Cynodon spp.). Crop Sci. 9:59.Google Scholar
Wills, G. D. 1984. Toxicity and translocation of sethoxydim in bermudagrass (Cynodon dactylon) as affected by environment. Weed Sci. 32:2024.Google Scholar