Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T20:54:51.094Z Has data issue: false hasContentIssue false

Behavior of Dinitroaniline Herbicides in Plants

Published online by Cambridge University Press:  12 June 2017

Arnold P. Appleby
Affiliation:
Crop Sci. Dep., Oreg. State Univ., Corvallis, OR 97331
Bernal E. Valverde
Affiliation:
Crop Sci. Dep., Oreg. State Univ., Corvallis, OR 97331

Abstract

Dinitroaniline herbicides are absorbed readily by roots and emerging shoots, but shoot exposure is more phytotoxic. Translocation within the plant varies by specific herbicide but commonly is minor. Dinitroaniline herbicides injure plants by binding to tubulin, a dimer protein in the ceil that polymerizes to form microtubules (MTs). MTs form the major part of the mitotic apparatus, including spindle fibers, which enable chromosomes to separate during cell division. Dinitroaniline herbicides prevent tubulin from polymerizing into MTs, thus arresting mitosis. This leads to abnormal cells with more than the normal complement of chromosomes and, frequently, lobed nuclei. MTs also are responsible for orienting cell wall microfibrils in such a way that they prevent lateral enlargement of cells. Treatment with dinitroaniline herbicides leads to disorientation of the microfibrils, leading to one of the common symptoms—spherical cells instead of rectangular ones. Studies on the metabolism of trifluralin in plants have shown that amination, dealkylation, and cyclization all can occur. However, metabolites often amount to a small percentage of the original herbicide. In general, trifluralin seems quite stable within the plant.

Type
Symposium
Copyright
Copyright © 1989 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Alder, E. F., Wright, W. L., and Soder, G. F. 1960. Control of seedling grasses in turf with diphenylacetonitrile and a substituted dinitroaniline. Proc. North Cent. Weed Control Conf. 17:2324.Google Scholar
2. Alsop, W. R., and Moreland, D. E. 1975. Effects of herbicides on the light-activated magnesium-dependent ATPase of isolated spinach (Spinacia oleracea L.) chloroplasts. Pestic. Biochem. Physiol. 5.163170.CrossRefGoogle Scholar
3. Ashton, F. M., and Crafts, A. S. 1981. Mode of action of herbicides. John Wiley & Sons, New York.Google Scholar
4. Bajer, A. S., and Mole-Bajer, J. 1986. Drugs with colchicine-like effects that specifically disassemble plant but not animal microtubles. Ann. N.Y. Acad. Sci. 446:767784.CrossRefGoogle Scholar
5. Barrentine, W. L., and Warren, G. F. 1971. Shoot zone activity of trifluralin and nitralin. Weed Sci. 19:3741.CrossRefGoogle Scholar
6. Bartles, P. G., and Hilton, J. L. 1973. Comparison of trifluralin, oryzalin, pronamide, propham, and colchicine treatments on microtubules. Pestic. Biochem. Physiol. 3:462472.CrossRefGoogle Scholar
7. Bayer, D. E., Foy, C. L., Mallory, T. E., and Cutter, E. G. 1967. Morphological and histological effects of trifluralin on root development. Am. J. Bot. 54:945952.CrossRefGoogle Scholar
8. Bobak, M. 1985. Ultrastructural changes of the nucleolus in meristematic cells of primary roots of the horse-bean (Vicia faba L.) after trifluralin application. Acta Fac. Rerum Nat. Univ. Comeninae Physiol. Plant. 21:1722.Google Scholar
9. Brown, D. L., Stearns, M. E., and Macrae, T. H. 1982. Microtubule organizing centres. p. 5583 in Lloyd, C. W. The cytoskeleton in plant growth and development. Academic Press, London.Google Scholar
10. Bryan, J. 1974. Microtubules. Bioscience 24:701711.CrossRefGoogle Scholar
11. Bucholtz, D. L., and Lavy, T. L. 1983. Alachlor and trifluralin effects on nutrient uptake in oats and soybeans. Agron. J. 71:2426.CrossRefGoogle Scholar
12. Clayton, L. 1985. The cytoskeleton and the plant cell cycle. p. 113131 in Bryant, J. A. and Francis, D., eds. The Cell Division Cycle in Plants. Cambridge University Press, Cambridge.Google Scholar
13. Dawson, P. J., and Lloyd, C. W. 1985. Identification of multiple tubulins in taxol microtubles purified from carrot suspension cells. EMBO J. 4:24512455.CrossRefGoogle Scholar
14. de Duve, C. 1984. A guided tour of the living cell. Scientific American Books, Inc., New York.Google Scholar
15. Derr, J. F., and Monaco, T. J. 1982. Ethalfluralin activity in cucumber (Cucumis sativus). Weed Sci. 30:498502.CrossRefGoogle Scholar
16. Dustin, P. 1984. Microtubules. Springer-Verlag New York, Inc., New York.CrossRefGoogle Scholar
17. Eleftheriou, E. P. 1987. Microtubules and cell wall development in differentiating protophloem sieve elements of Triticum aestivum L.J. Cell Sci. 87:595597.CrossRefGoogle Scholar
18. Gentner, W. A., and Burk, L. G. 1968. Gross morphological and cytological effects of nitralin on corn roots. Weed Sci. 16:259260.CrossRefGoogle Scholar
19. Golab, T., Herberg, R. J., Parka, S. J., and Tepe, J. B. 1967. Metabolism of carbon-14 trifluralin in carrots. J. Agric. Food Chem. 15:638641.CrossRefGoogle Scholar
20. Golab, T., Herberg, R. J., Gramlich, J. V., Raun, A. P., and Probst, G. W. 1970. Fate of benefin in soils, plants, artificial rumen fluid, and the ruminant animal. J. Agric. Food Chem. 18:838844.CrossRefGoogle ScholarPubMed
21. Gull, K., Hussey, P. J., Sasse, R., Schneider, A., Seebek, T., and Sherwin, T. 1986. Tubulin isotypes: generation of diversity in cells and microtubular organelles. J. Cell Sci. Suppl. 5:243255.CrossRefGoogle ScholarPubMed
22. Gunning, B. E., and Hardham, A. R. 1979. Microtubules and morphogenesis in plants. Endeavour 3:112117.CrossRefGoogle Scholar
23. Hacskaylo, J., and Amato, V. A. 1968. Effect of trifluralin on roots of corn and cotton. Weed Sci. 16:513515.CrossRefGoogle Scholar
24. Hatzios, K. K., and Penner, D. 1982. Metabolism of herbicides in higher plants. Burgess Publ. Co., Minneapolis.Google Scholar
25. Hawxby, K., and Basler, E. 1976. Effects of temperature on absorption and translocation of profluralin and dinitramine. Weed Sci. 24:545548.CrossRefGoogle Scholar
26. Heath, M. C., Ashford, R., and McKercher, R. B. 1984. Trifluralin and trial late retention by imbibed tame oat (Avena sativa) caryopses. Weed Sci. 32:251257.CrossRefGoogle Scholar
27. Hertel, C., and Marme, D. 1983. Herbicides and fungicides inhibit Ca2+ uptake by plant mitochondria: a possible mechanism of action. Pestic. Biochem. Physiol. 19:282290.CrossRefGoogle Scholar
28. Hertel, C., Quader, H., Robinson, D. G., and Marme, D. 1980. Antimicrotubular herbicides and fungicides affect Ca2+ transport in plant mitochondria. Planta 149:336340.CrossRefGoogle ScholarPubMed
29. Hess, F. D. 1979. The influence of the herbicide trifluralin on flagellar regeneration in Chlamydomonas . Exp. Cell Res. 119:99109.CrossRefGoogle ScholarPubMed
30. Hess, F. D. 1983. Mode of action of herbicides that affect cell division. p. 7984 in Miyamoto, J. and Kearney, P. C., eds. Pesticide Chemistry: Human Welfare and the Environment. Vol. 3. Mode of Action, Metabolism, and Toxicology. Pergamon Press, Oxford.Google Scholar
31. Hess, F. D., and Bayer, D. 1974. The effect of trifluralin on the ultrastructure of dividing cells of the root meristem of cotton (Gossypium hirsutum O. ‘Acala’ 4–42). J. Cell Sci. 15:429441.CrossRefGoogle Scholar
32. Hess, F. D., and Bayer, D. E. 1977. Binding of the herbicide trifluralin to Chlamydomonas flagellar tubulin. J. Cell. Sci. 24:351360.CrossRefGoogle ScholarPubMed
33. Hilton, J. L., and Christiansen, M. N. 1972. Lipid contribution to selective action of trifluralin. Weed Sci. 20:290294.CrossRefGoogle Scholar
34. Hussey, P. J., and Gull, K. 1985. Multiple isotypes of a- and b-tubulin in the plant Phaseolus vulgaris . FEBS Lett. 181:113118.CrossRefGoogle Scholar
35. Jackson, W. T., and Stetler, D. 1973. Regulation of mitosis. IV. An in vitro and ultrastructural study of effects of trifluralin. Am. J. Bot. 51.15131518.Google Scholar
36. Jacques, G. L., and Harvey, R. G. 1979. Dinitroaniline herbicide phytotoxicity as influenced by soil moisure and herbicide vaporization. Weed Sci. 27:536539.CrossRefGoogle Scholar
37. Jacques, G. L., and Harvey, R. G. 1979. Vapor absorption and translocation of dinitroaniline herbicides in oats (Avena sativa) and peas (Pisum sativum). Weed Sci. 27:371374.CrossRefGoogle Scholar
38. Johnson, K. A., and Borisy, G. G. 1975. The equilibrium assembly of microtubules in vitro. p. 119141 in Inoue, J. and Stephens, R., eds. Molecules and Cell Movement. Raven Press, New York.Google Scholar
39. Knake, E. L., Appleby, A. P., and Furtick, W. R. 1967. Soil incorporation and site of uptake of preemergence herbicides. Weeds 15:228232.CrossRefGoogle Scholar
40. Knake, E. L., and Wax, L. M. 1968. The importance of the shoot of giant foxtail for uptake of preemergence herbicides. Weed Sci. 16:393395.CrossRefGoogle Scholar
41. Kust, C. A., and Struckmeyer, B. E. 1971. Effects of trifluralin on growth, nodulation, and anatomy of soybeans. Weed Sci. 19:147152.CrossRefGoogle Scholar
42. Lignowski, E. M., and Scott, E. G. 1971. Trifluralin and root growth. Plant Cell Physiol. 12:701708.Google Scholar
43. Lignowski, E. M., and Scott, E. G. 1972. Effect of trifluralin on mitosis. Weed Sci. 20:267270.CrossRefGoogle Scholar
44. Malefyt, T. D. 1982. The effect of pendimethalin on velvetleaf (Albutilon theophrasti Medic.) and pigweed (Amaranthus spp.) growth and development. Ph.D. dissertation. Cornell Univ. in Diss. Abstr. 43:2073B.Google Scholar
45. Marchant, H. J. 1979. Microtubules, cell wall deposition, and determination of cell shape. Nature 278:167168.CrossRefGoogle Scholar
46. Marquis, L. Y., Shimabukuro, R. H., Stolzenberg, G. E., Feil, V. J., and Zaylskie, R. G. 1979. Metabolism and selectivity of fluchloralin in soybean roots. J. Agric. Food Chem. 27:11481156.CrossRefGoogle ScholarPubMed
47. Merezhinskii, Y. G., and Sharmankin, S. V. 1986. Assembly of microtubules in vitro in the presence of trifluralin. Fiziol. Biokhim. Kul'T. Rast. 18:299303.Google Scholar
48. Millhollon, R. W. 1978. Toxicity of soil-incoroporated trifluralin to johnsongrass (Sorghum halepense) rhizomes. Weed Sci. 26:171174.CrossRefGoogle Scholar
49. Mizuno, K., Sek, R., Perkin, J., Wick, S., Duniec, J., and Gunning, B. 1985. Monoclonal antibodies specific to plant tubulin. Protoplasma 129:100108.CrossRefGoogle Scholar
50. Morejohn, L. C., Bureau, T. E., and Fosket, D. E. 1983. Oryzalin binds to plant tubulin (T) and inhibits taxol-induced microtubule (MT) assembly in vitro. J. Cell Biol. 97:211a.Google Scholar
51. Morejohn, L. C., Bureau, T. E., Mole-Bajer, J., Bajer, A. S., and Fosket, D. E. 1987. Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172:252264.CrossRefGoogle ScholarPubMed
52. Morejohn, L. C., Bureau, T. E., Tocchi, L. P., and Fosket, D. E. 1984. Tubulins from different higher plant species are immunologically nonidentical and bind colchicine differentially. Proc. Nat. Acad. Sci. 81:14401444.CrossRefGoogle ScholarPubMed
53. Morejohn, L. C., Bureau, T. E., Tocchi, L. P., and Fosket, D. E. 1987. Resistance of Rosa microtubule polymerization to colchicine results from a low-affinity interaction of colchicine and tubulin. Planta 170:230241.CrossRefGoogle ScholarPubMed
54. Morejohn, L. C., and Fosket, D. E. 1984. Inhibition of plant microtubule polymerization in vitro by the phosphoric amide herbicide aminoprophos-methyl. Science 224:874876.CrossRefGoogle Scholar
55. Morejohn, L. C., and Fosket, D. E. 1984. Taxol-induced rose microtubule polymerization in vitro and its inhibition by colchicine. J. Cell Biol. 99:141147.CrossRefGoogle ScholarPubMed
56. Morejohn, L. C., and Fosket, D. E. 1986. Tubulins from plants, fungi and protists. p. 257329 in Shay, J. W., ed. Cell and Molecular Biology of the Cytoskeleton. Plenum Press, New York.CrossRefGoogle Scholar
57. Moreland, D. E., Farmer, F. S., and Hussey, G. G. 1972. Inhibition of photosynthesis and respiration by substituted 1,6-dinitroaniline herbicides. I. Effects on chloroplast and mitochondrial activities. Pestic. Biochem. Physiol. 2:342353.CrossRefGoogle Scholar
58. Moreland, D. E., Farmer, F. S., and Hussey, G. G. 1972. Inhibition of photosynthesis and respiration by substituted 2,6-dinitroaniline herbicides. II. Effects on responses in excised plant tissues and treated seedlings. Pestic. Biochem. Physiol. 2:354363.CrossRefGoogle Scholar
59. Ndon, B. A., and Harvey, R. G. 1981. Effects of seed and root lipids on the susceptibility of plants to trifluralin and oryzalin. Weed Sci. 29:420425.CrossRefGoogle Scholar
60. Negi, N. S., Funderburk, H. H. Jr., Schultz, D. P., and Davis, D. E. 1968. Effect of trifluralin and nitralin on mitochondrial activities. Weed Sci. 16:8385.CrossRefGoogle Scholar
61. Norton, J. A., Walter, J. P. Jr., and Storey, J. B. 1970. The effect of herbicides on lateral roots and nut quality of pecans. Weed Sci. 18:520522.CrossRefGoogle Scholar
62. Okamura, S. 1980. Binding of colchicine to a soluble fraction of carrot cells grown in suspension culture. Planta 149:350354.CrossRefGoogle ScholarPubMed
63. Olson, B. M., McKercher, R. B., and Halstead, E. H. 1984. Effects of trifluralin on root morphology and mineral status of wheat (Triticum aestivum) seedlings. Weed Sci. 32:382387.CrossRefGoogle Scholar
64. Parka, S. J., and Soper, O. F. 1977. The physiology and mode of action of the dinitroaniline herbicides. Weed Sci. 25:7987.CrossRefGoogle Scholar
65. Parker, C. 1966. The importance of shoot entry in the action of herbicides applied to the soil. Weeds 14:117121.CrossRefGoogle Scholar
66. Penner, D., and Early, R. W. 1972. Action of trifluralin on chromatin activity in corn and soybean. Weed Sci. 20:364366.CrossRefGoogle Scholar
67. Prendeville, G. N., Eshel, Y., Schreiber, M. M., and Warren, G. F. 1967. Site of uptake of soil-applied herbicides. Weed Res. 7:316322.CrossRefGoogle Scholar
68. Quader, H., and Filner, P. 1980. The action of antimitotic herbicides on flagellar regeneration in Chlamydomonas reinhardtii: a comparision with the action of colchicine. Eur. J. Cell Biol. 21:301304.Google Scholar
69. Quarder, H., Herth, W., Ryser, U., and Schnepf, E. 1987. Cytoskeletal elements in cotton seed hair development in vitro: their possible regulatory role in cell wall organization. Protoplasma 137:5662.CrossRefGoogle Scholar
70. Rahman, A., and Ashford, R. 1970. Selective action of trifluralin for control of green foxtail in wheat. Weed Sci. 18:754759.CrossRefGoogle Scholar
71. Robinson, S. J., Yocum, C. F., and Ikuma, H. 1977. Inhibition of chloroplast electron transport reactions by trifluralin and diallate. Plant Physiol. 60:840844.CrossRefGoogle ScholarPubMed
72. Sawamura, S., and Jackson, W. T. 1968. Cytological studies in vivo of picloram, pyriclor, trifluralin, 2,3,6-TBA, and nitralin. Cytologia 33:545554.CrossRefGoogle Scholar
73. Schultz, D. P., Funderburk, H. H. Jr., and Negi, N. S. 1968. Effect of trifluralin on growth, morphology, and nucleic acid synthesis. Plant Physiol. 43:265273.CrossRefGoogle ScholarPubMed
74. Schweizer, E. E. 1970. Aberrations in sugarbeet roots as induced by trifluralin. Weed Sci. 18:131134.CrossRefGoogle Scholar
75. Somaskova, M., Bobak, M., and Varkonda, S. 1985. Ultrastructural changes of chloroplasts in leaves of Vicia faba L. induced by trifluralin. Acta Fac. Rerum Nat. Univ. Comenianae Physiol. Plant. 21:2326.Google Scholar
76. Standifer, L. C. Jr., and Thomas, C. H. 1965. Response of johnsongrass to soil-incorporated trifluralin. Weeds 13:302306.CrossRefGoogle Scholar
77. Strachan, S. D., and Hess, F. D. 1983. The biochemical mechanism of action of the dinitroaniline herbicide oryzalin. Pestic. Biochem. Physiol. 20:131150.CrossRefGoogle Scholar
78. Strang, R. H., and Rogers, R. L. 1971. A microradioautographic study of 14C-trifluralin absorption. Weed Sci. 19:363369.CrossRefGoogle Scholar
79. Struckmeyer, B. E., Binning, L. K., and Harvey, R. G. 1976. Effect of dinitroaniline herbicides in a soil medium on snap beans and soybean. Weed Sci. 24:366369.CrossRefGoogle Scholar
80. Trewavas, A. J. 1985. Growth substances, calcium and the regulation of cell division. p. 133156 in Bryant, J. A. and Francis, D., eds. The Cell Division Cycle in Plants. Cambridge University Press, Cambridge.Google Scholar
81. Upadhyaya, M. K., and Nooden, L. D. 1977. Mode of dinitroaniline herbicide action. I. Analysis of the colchicine-like effects of dinitroaniline herbicides. Plant Cell Physiol. 18:13191330.CrossRefGoogle Scholar
82. Upadhyaya, M. K., and Nooden, L. D. 1978. 14C-oryzalin binding in the roots of a resistant and a sensitive species. Plant Physiol. 61 (Suppl.):56.Google Scholar
83. Upadhyaya, M. K., and Nooden, L. D. 1980. Mode of dinitroaniline herbicide action. II. Characterization of [14C] oryzalin uptake and binding. Plant Physiol. 66:10481052.CrossRefGoogle ScholarPubMed
84. Upadhyaya, M. K., and Nooden, L. D. 1987. Comparison of [14C] oryzalin uptake in root segments of a sensitive and a resistant species. Ann. Bot. 59:483485.CrossRefGoogle Scholar
85. Vandeventer, J. W., Meggitt, W. F., and Penner, D. 1982. Morphological and physiological variability in black nightshade (Solanum spp.). Pestic. Sci. 13:257262.CrossRefGoogle Scholar
86. Vandeventer, J. W., Meggitt, W. F., and Penner, D. 1986. Absorption, translocation, and metabolism of ethalfluralin and trifluralin in Solanum spp. Pestic. Sci. 17:380384.CrossRefGoogle Scholar
87. Vaughan, M. A., and Vaughn, K. C. 1987. Taxol treatment of Eleusine indicates hyper-stabilized tubulin may cause dinitroaniline resistance. Plant Physiol. 83(Suppl.):643.Google Scholar
88. Vaughn, K. C. 1986. Cytological studies of dinitroaniline-resistant Eleusine . Pestic. Biochem. Physiol. 26:6674.CrossRefGoogle Scholar
89. Vaughn, K. C. 1986. Dinitroaniline resistance in goosegrass [Eleusine indica (L.)Gaertn.] is due to an altered tubulin. Abstr. Weed Sci. Soc. Am. 26:77.Google Scholar
90. Vaughn, K. C., and Koskinen, W. C. 1987. Effects of trifluralin metabolites on goosegrass (Elusine indica) root meristems. Weed Sci. 35:3644.CrossRefGoogle Scholar
91. Wang, B., Grooms, S., and Frans, R. E. 1974. Response of soybean mitochondria to substituted dinitroaniline herbicides. Weed Sci. 22:6465.CrossRefGoogle Scholar
92. Willis, M. D., and Putnam, A. R. 1986. Absorption and translocation of 14C-ethalfluralin in cucumber (Cucumis sativus). Weed Sci. 34:1316.CrossRefGoogle Scholar