Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T00:05:54.930Z Has data issue: false hasContentIssue false

Banana Pepper Response and Annual Weed Control with S-metolachlor and Clomazone

Published online by Cambridge University Press:  20 January 2017

Mohsen Mohseni-Moghadam
Affiliation:
Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, Ohio State University, 1680 Madison Avenue, Wooster, OH 44691
Douglas Doohan*
Affiliation:
Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, Ohio State University, 1680 Madison Avenue, Wooster, OH 44691
*
Corresponding author's E-mail: [email protected].

Abstract

Field experiments were conducted at the North Central Agricultural Research Station in Fremont, OH, in 2006 and 2007, to evaluate tolerance of banana pepper to S-metolachlor and clomazone, and the efficacy of these herbicides on green and giant foxtail, common lambsquarters, and common purslane. The crop was machine-transplanted in late spring of each year. Pretransplant (PRETP) herbicide treatments included two S-metolachlor rates (534 and 1,070 g ai ha−1), two clomazone rates (560 and 1,120 g ai ha−1), and four tank mixes of S-metolachlor plus clomazone (534 + 560 g ha−1, 1,070 + 560 g ha−1, 534 + 1,120 g ha−1, and 1,070 + 1,120 g ha−1). Crop injury and weed control data were collected at 2 and 4 wk after treatment (WAT). The crop was harvested two times from August to September. Minor crop injury was observed at 2 WAT only in 2006 and in plots treated with S-metolachlor, alone or in combination with clomazone. In 2007, slight crop injury at 6 WAT in most herbicide-treated plots was mostly related to weeds that grew regardless of herbicide treatment. In general, S-metolachlor provided less weed control than did clomazone or tank mixes of S-metolachlor plus clomazone. Clomazone did not reduce yield of banana pepper. Registration of clomazone would provide banana pepper growers an opportunity to control weeds caused by late emergence or poor initial control following a burndown herbicide application.

Experimentos de campo fueron realizados en la Estación de Investigación Agrícola del Centro Norte en Fremont, Ohio, en 2006 y 2007, para evaluar la tolerancia del pimiento banano a S-metolachlor y clomazone, y la eficacia de estos herbicidas para el control de Setaria viridis, Setaria faberi, Chenopodium album, y Portulaca oleracea. El cultivo fue trasplantado mecánicamente tarde en la primavera en ambos años. Los tratamientos de herbicidas pre-trasplante (PRETP) incluyeron dos dosis de S-metolachlor (534 y 1,070 g ai ha−1), dos dosis de clomazone (560 y 1,120 g ai ha−1), y cuatro mezclas en tanque de S-metolachlor más clomazone (534 + 560 g ha−1, 1,070 + 560 g ha−1, 534 + 1,120 g ha−1, y 1,070 + 1,120 g ha−1). Se colectaron datos de daño al cultivo y de control de malezas a 2 y 4 semanas después del tratamiento (WAT). El cultivo se cosechó dos veces entre Agosto y Septiembre. Se observó un poco de daño en el cultivo a 2 WAT solamente en 2006 y en parcelas tratadas con S-metolachlor, solo o en combinación con clomazone. En 2007, un ligero daño en el cultivo a 6 WAT en la mayoría de las parcelas tratadas con herbicidas estuvo mayoritariamente relacionado a malezas que crecieron sin importar el tratamiento de herbicidas. En general, S-metolachlor brindó menos control de malezas que clomazone o que las mezclas en tanque de S-metolachlor más clomazone. El clomazone no redujo el rendimiento del pimiento banano. El registro de clomazone proveería a los productores de pimiento banano de una oportunidad para el control de malezas producto de emergencia tardía o de un control inicial pobre antes del trasplante.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ackley, JA, Wilson, HP, and Hines, TE (1998) Weed management in transplanted bell pepper (Capsicum frutescens) with clomazone and rimsulfuron. Weed Technol 12:458462 CrossRefGoogle Scholar
Adigun, JA, Lagoke, STO, and Karikari, SK (1991) Chemical weed control in irrigated sweet pepper (Capsicum annuum L.). Intl J Pest Manag 37:155158 Google Scholar
Bangarwa, SK, Norsworthy, JK, and Gbur, EE (2009) Integration of a Brassicaceae cover crop with herbicides in plasticulture tomato. Weed Technol 23:280286 CrossRefGoogle Scholar
Bosland, PW, Votava, EJ, and Votava, EM (2012) Peppers: Vegetable and Spice Capsicums. 2nd edn, Volume 22. Wallingford, Oxfordshire, UK: CABI CrossRefGoogle Scholar
Campiglia, E, Radicetti, E, and Maneinelli, R (2012) Weed control strategies and yield response in a pepper crop (Capsicum annuum L.) mulched with hairy vetch (Vicia villosa Roth.) and oat (Avena sativa L.) residues. Crop Prot 33:6573 CrossRefGoogle Scholar
Carmer, SG, Nyquist, WE, Walker, WM (1989) Least significant differences for combined analyses of experiments with two- and three- factor treatment designs. Agron J 81:665672 CrossRefGoogle Scholar
Grey, TL, Bridges, DC, and NeSmith, DS (2001) Response of several transplanted pepper cultivars to variable rates and methods of application of clomazone. Hortscience 36:104106 CrossRefGoogle Scholar
Harrison, HF, and Farnham, MW (2013) Differences in tolerance of broccoli and cabbage cultivars to clomazone herbicide. Horttechnology 23:611 CrossRefGoogle Scholar
Isik, D, Kaya, E, Ngouajio, M, and Mennan, H (2009) Weed suppression in organic pepper (Capsicum annuum L.) with winter cover crops. Crop Prot 28:356363 CrossRefGoogle Scholar
Keyhaninejad, N, Curry, J, Romero, J, O'Connell, MA (2014) Fruit specific variability in capsaicinoid accumulation and transcription of structural and regulatory genes in Capsicum fruit. Plant Sci 215:5968 CrossRefGoogle ScholarPubMed
Lament, WJ (1993) Plastic mulches for the production of vegetable crops. Horttechnology 3:3539 CrossRefGoogle Scholar
Morales-Payan, JP, Santos, BM, Stall, WM, Bewick, TA (1997) Effects of purple nutsedge (Cyperus rotundus) on tomato (Lycopersicon esculentum) and bell pepper (Capisum annuum) vegetative growth and fruit yield. Weed Technol 11:672676 CrossRefGoogle Scholar
[NASS] National Agricultural Statistics Service (2014) http://usda.mannlib.cornell.edu/usda/current/VegeSumm/VegeSumm-03-27-2014.pdf. Accessed November 3, 2014Google Scholar
Norsworthy, JK, Oliveira, MJ, Jha, P, Malik, M, Buckelew, JK, Jennings, KM, Monks, DW (2008) Palmer amaranth and large crabgrass growth with plasticulture-grown bell pepper. Weed Technol 22:296302 CrossRefGoogle Scholar
Pekarek, RA (2009) Evaluation of a ‘Caliente' Mustard Cover Crop, S-metolachlor, Imazosulfuron, and Thifensulfuron-Methyl for Weed Control in Bell Pepper. . Raleigh, NC: North Carolina State University. 141 pGoogle Scholar
Robinson, D. E., McNaughton, K., and Soltani, N. 2008. Weed management in transplanted bell pepper (Capsicum annuum) with pretransplant tank mixes of sulfentrazone, S-metolachlor, and dimethenamid-p. Hortscience 43:14921494 CrossRefGoogle Scholar
Santos, BM, McAvoy, EJ, Ozores-Hampton, M, Dittmar, PJ, Vallad, GE, Webb, SE, Olson, SM (2013) Pepper production in Florida. Pages 121132 in Olson, SM, Santos, B, eds. Vegetable Production Handbook for Florida. Gainesville, FL: Institute of Food and Agricultural Sciences Extension, University of Florida Google Scholar