Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T12:42:48.721Z Has data issue: false hasContentIssue false

Allyl Isothiocyanate as a Methyl Bromide Alternative for Weed Management in Polyethylene-Mulched Tomato

Published online by Cambridge University Press:  20 January 2017

Sanjeev K. Bangarwa
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Edward E. Gbur
Affiliation:
Agricultural Statistics Laboratory, University of Arkansas, 101 Agricultural Annex Building, Fayetteville, AR 72701
*
Corresponding author's E-mail: [email protected]

Abstract

Methyl bromide has been widely used for weed control in polyethylene-mulched tomato production. With the phaseout of methyl bromide in the United States, an effective alternative is needed. Field experiments were conducted in 2007 and 2009 to determine if allyl isothiocyanate (ITC) would provide substantive weed control in tomato along with crop tolerance under low-density polyethylene (LDPE) and virtually impermeable film (VIF) mulch. Treatment factors included two mulch types (LDPE and VIF) and six rates of allyl ITC (0, 15, 75, 150, 750, 1,500 kg ha−1). A standard treatment of methyl bromide : chloropicrin (67 : 33%) at 390 kg ha−1 under LDPE mulch was also established. Allyl ITC was broadcast applied and incorporated in soil before forming raised beds and laying plastic mulch. Tomatoes were transplanted 3 wk after applying allyl ITC or methyl bromide treatments. Tomato injury was ≤ 8% in all treatments at 2 wk after transplanting (WATP). Allyl ITC at 913 (± 191) kg ha−1 was required to control yellow nutsedge, Palmer amaranth, and large crabgrass equivalent to methyl bromide at 6 WATP and maintain marketable tomato yield equivalent to methyl bromide treatment. VIF mulch was not effective in increasing weed control or improving the marketable yield of tomato over LDPE mulch. This research demonstrates that allyl ITC under an LDPE mulch can have a practical application for weed control in polyethylene-mulched tomato in the absence of methyl bromide.

El methyl bromide ha sido extensamente usado para el control de malezas en la producción de tomate con cobertura de polietileno. Con la eliminación progresiva de methyl bromide en los Estados Unidos, se necesita una alternativa efectiva. Experimentos de campo se realizaron en 2007 y 2009 para determinar si allyl isothiocyanate (ITC) podría proporcionar un control sustancial de malezas en tomate, permitiendo la tolerancia del cultivo bajo una cobertura de polietileno de baja densidad (LDPE) y una cobertura de película virtualmente impermeable (VIF). Los factores de los tratamientos incluyeron dos tipos de cobertura (LDPE y VIF) y seis dosis de allyl ITC (0, 15, 75, 150, 750, 1500 kg ha−1). También se estableció un tratamiento estándar de methyl bromide: chloropicrin (67: 33%) a 390 kg ha−1 bajo cobertura LDPE. Allyl ITC fue aplicado al voleo e incorporado al suelo antes de formar camas elevadas y colocar la cubertura plástica. Los tomates se trasplantaron 3 semanas después de aplicar los tratamientos de allyl ITC o methyl bromide. El daño al tomate fue ≤8% en todos los tratamientos 2 semanas después del trasplante (WATP). Allyl ITC a 913 (±191) kg ha−1 fue requerido para el control de Cyperus esculentus, Amaranthus palmeri y Digitaria sanguinalis, a niveles equivalentes a methyl bromide a las 6 WATP, y también para mantener el rendimiento comercial del tomate, equivalente al tratamiento con methyl bromide. La cobertura VIF no fue efectiva en aumentar el control de malezas o en incrementar el rendimiento comercial del tomate por encima de los niveles obtenidos con el uso de una cobertura LDPE. Esta investigación demuestra que allyl ITC bajo una cobertura LDPE puede tener una aplicación práctica para el control de malezas en la producción de tomate con cobertura de polietileno en ausencia de methyl bromide.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, . 2011. Allyl isothiocyanates: Material Safety Data Sheet. Available at http://www.sigmaaldrich.com/catalog/DisplayMSDSContent.do. Accessed: December 15, 2011.Google Scholar
Bangarwa, S. K., Norsworthy, J. K., Gbur, E. E., Zhang, J., and Habtom, T. 2011a. Allyl isothiocyanate: a methyl bromide replacement in polyethylene-mulched bell pepper. Weed Technol. 25:9096.Google Scholar
Bangarwa, S. K., Norsworthy, J. K., Mattice, J. D., and Gbur, E. E. 2011b. Glucosinolate and isothiocyanate production from Brassicaceae cover crops in a plasticulture production system. Weed Sci. 59:247254.Google Scholar
Brown, P. D. and Morra, M. J. 1995. Glucosinolate-containing plant tissues as bioherbicides. J. Agric. Food Chem. 43:30703074.Google Scholar
Buckelew, J. K., Monks, D. W., Jennings, K. M., Hoyt, G. D., and Walls, R. F. Jr. 2006. Eastern black nightshade (Solanum ptycanthum) reproduction and interference in transplanted plasticulture tomato. Weed Sci. 54:490495.Google Scholar
Buskov, S., Serra, B., Rosa, E., Sorensen, H., and Sorensen, J. C. 2002. Effects of intact glucosinolates and products produced from glucosinolates in myrosinase-catalyzed hydrolysis on the potato cyst nematode (Globodera rostochiensis). J. Agric. Food Chem. 50:690695.Google Scholar
Chase, C. A., Sinclair, T. R., Shilling, D. G., Gilreath, J. P., and Locascio, S. J. 1998. Light effects on rhizome morphogenesis in nutsedges (Cyperus spp.): implications for control by soil solarization. Weed Sci. 46:575580.Google Scholar
Duniway, J. M. 2002. Status of chemical alternatives of methyl bromide for preplant fumigation in soil. Phytopathology 92:13371343.Google Scholar
Fenwick, G. R., Heaney, R. K., and Mullin, W. J. 1983. Glucosinolates and their breakdown products in food and food plants. Crit. Rev. Food Sci. Nutr. 18:123201.Google Scholar
Friesen, A. G. 1979. Weed interference in transplanted tomatoes (Lycopersicon esculentum). Weed Sci. 27:1113.Google Scholar
Hartz, T. K., Johnstone, P. R., Miyao, E. M., and Davis, R. M. 2005. Mustard cover crops are ineffective in suppressing soilborne disease or improving processing tomato yield. HortScience 40:20162019.Google Scholar
Harvey, S. G., Hannahan, H. N., and Sams, C. E. 2002. Indian mustard and allyl isothiocyanate inhibit Scelerotium rolfsii . J. Am. Soc. Hort. Sci. 127:2731.Google Scholar
Holmes, G. J. and Kemble, J. M., eds. 2010. Vegetable Crop Handbook for the Southeastern United States. 11th ed. Lincolnshire, IL Vance Publishing.Google Scholar
Lewis, J. A. and Papavizas, G. C. 1971. Effect of sulfur-containing volatile compounds and vapors from cabbage decomposition on Aphanomyces euteiches. Phytopathology 61:208214.Google Scholar
Matthiessen, J. N. and Shackleton, M. A. 2005. Biofumigation: environmental impacts on the biological activity of diverse pure and plant-derived isothiocyanates. Pest Manag. Sci. 61:10431051.Google Scholar
Mattner, S. W., Porter, I. J., Gounder, R. K., Shanks, A. L., Wren, D. J., and Allen, D. 2008. Factors that impact on the ability of biofumigants to suppress fungal pathogens and weeds of strawberry. Crop Prot. 27:11651173.Google Scholar
Mayton, H. S., Olivier, C., Vaughn, S. F., and Loria, R. 1996. Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Phytopathology 86:267271.Google Scholar
Morales-Payan, J. P. 1999. Interference of Purple and Yellow Nutsedges (Cyperus rotundus L. and Cyperus esculentus L.) with Tomato (Lycopersicon esculentum Mill.). Ph.D dissertation. Gainesville, FL: University of Florida.Google Scholar
Noble, R. P., Charron, C. S., and Sams, C. E. 1998. Toxicity of Indian mustard and allyl isothiocyanate to masked chafer beetle larvae. HortScience 34:554555.Google Scholar
Noling, J. W. 2005. Reducing methyl bromide field application rates with plastic mulch technology. Available at: http://edis.ifas.ufl.edu/pdffiles/IN/IN40300.pdf. Accessed: January 11, 2011.Google Scholar
Norsworthy, J. K. and Meehan, J. T. IV. 2005a. Herbicidal activity of eight isothiocyanates on Texas panicum (Panicum texanum), large crabgrass (Digitaria sanguinalis), and sicklepod (Senna obtusifolia). Weed Sci. 53:515520.Google Scholar
Norsworthy, J. K. and Meehan, J. T. IV. 2005b. Use of isothiocyanates for suppression of Palmer amaranth (Amaranthus palmeri), pitted morningglory (Ipomoea lacunosa), and yellow nutsedge (Cyperus esculentus). Weed Sci. 53:884890.Google Scholar
Patterson, D. T. 1998. Suppression of purple nutsedge (Cyperus rotundus) with polyethylene film mulch. Weed Technol. 12:275280.Google Scholar
Perez, F. G. and Masiunas, J. B. 1990. Eastern black nightshade (Solanum ptycanthum) interference in processing tomato (Lycopersicon esculentum). Weed Sci 38:385388.Google Scholar
Petersen, J., Belz, R., Walker, F., and Hurle, K. 2001. Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron. J. 93:3743.Google Scholar
Rosa, E.A.S., Heaney, R. K., Fenwick, G. R., and Portas, C.A.M. 1997. Glucosinolates in crop plants. Hort. Rev. 19:99215.Google Scholar
Santos, B. M., Gilreath, J. P., and Siham, M. N. 2007. Comparing fumigant retention of polyethylene mulches for nutsedge control in Florida spodosols. HortTechnology 17:308311.Google Scholar
Sarwar, M., Kirkegaard, J. A., Wong, P.T.W., and Desmarchelier, J. M. 1998. Biofumigation potential of brassicas. III—In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil 201:103112.Google Scholar
Schabenberger, O. and Pierce, F. J. 2002. Contemporary Statistical Models for the Plant and Soil Sciences. Boca Raton, FL CRC Press. Pp. 213222.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9:218227.Google Scholar
Stuart, A. and Ord, J. K. 1994. Kendall's Advanced Theory of Statistics. London, UK Edward Arnold. 350354.Google Scholar
[USDA] U. S. Department of Agriculture. 1997. United States Standards for Grades of Fresh Tomatoes. http://www.ams.usda.gov/AMSv1.0/getfile? dDocName = STELPRDC5050331. Accessed: March 11, 2011.Google Scholar
[USDA] U. S. Department of Agriculture, Economic Research Service. 2011. Vegetables 2010 Summary. http://usda.mannlib.cornell.edu/usda/current/VegeSumm/VegeSumm-01-27-2011.pdf. Accessed: June 18, 2011.Google Scholar
[USEPA] U. S. Environmental Protection Agency. 2008. Ozone Layer Depletion—Regulatory Programs: the Phaseout of Methyl Bromide Montreal Protocol. http://www.epa.gov/ozone/mbr/index.html. Accessed: September 15, 2008.Google Scholar
Wang, D., Yates, S. R., Ernst, F. F., Gan, J., and Jury, W. A. 1997. Reducing methyl bromide emission with a high barrier plastic film and reduced dosages. Environ. Sci. Technol. 31:36863691.Google Scholar
Weaver, S. E. and Tan, C. S. 1983. Critical period of weed interference in transplanted tomatoes (Lycopersicon esculentum): growth analysis. Weed Sci 31:476481.Google Scholar
Webster, T. M. 2006. Weed survey—southern states: vegetable, fruit and nut crops subsection. Proc. South. Weed Sci. Soc. 59:260277.Google Scholar
Worfel, R. C., Schneider, K. S., and Yang, T. C. S. 1997. Suppressive effect of allyl isothiocyanate on population of stored grain insect pests. J. Food Proc. Preserv. 21:919.Google Scholar
Zasada, I. A. and Ferris, H. 2004. Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles. Soil Biol. Biochem. 36:10171024.Google Scholar