Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T02:42:42.742Z Has data issue: false hasContentIssue false

Addressing Real Weed Science Needs with Innovations

Published online by Cambridge University Press:  12 June 2017

Jonathan Gressel*
Affiliation:
Dep. Plant Genetics, The Weizmann Inst. of Sci., Rehovot, IL-76100, Israel

Abstract

Weed science is responsible for reducing weed competition with crops, within constraints, allowing food production for a growing world population. We have been successful, but with an increasing reliance on the fantastic arsenal of herbicides. Heavy herbicide usage and the concomitant loss of control due to changing weed species spectra, as well as evolved herbicide resistance, along with cancellations of registrations, limit chemical options. Old “innovations” such as well-conceived rotations and various mechanical procedures partly alleviate chemical dependency. We must try innovative, meaningful herbicide mixtures, whether synergistic or additive, mixtures of crop varieties, more competitive varieties, including allelopathic varieties, which could all help to lower chemical dependency. Three cases where innovative genetic-engineering coupled with chemistry seem to be needed are: (a) for the control of parasitic higher plant weeds such as broomrapes (Orobanche spp.), dodders (Cuscuta spp.), witchweeds (Striga spp.) that cannot be controlled by mechanical or selective chemical means with a sufficient margin of user error; (b) for the control of weeds in wheat (Triticum spp.) that are evolving multiple and cross resistances to all wheat-selective herbicides; and (c) to replace the major s-triazine and chloroacetamide herbicides in corn (Zea mays L.) that are under attack and where many local restrictions and cancellations have been imposed. We need better replacements than the resistance-prone inhibitors of acetolactate-synthase and acetyl-CoA-carboxylase. Much of the long-term innovative planning and research must come from the public sector as no one else seems willing to fill the needs.

Type
Feature/Honorary Member Address
Copyright
Copyright © 1990 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Akóbundu, I. O. 1991. Weeds in human affairs is sub-Saharan Africa. Weed Technol. 5:860–690.Google Scholar
2. Amsellem, Z., Sharon, A., and Gressel, J. 1991. Abolition of selectivity of two mycoherbicidal organisms and enhanced virulence of avirulent fungi by an invert emulsion. Phytopathology 81:985988.Google Scholar
3. Amsellem, Z., Sharon, A., Gressel, J., and Quimby, P. C. Jr. 1990. Complete abolition of high inoculum threshold of two mycoherbicides (Alternaria cassiae and A. crassa) when applied in invert emulsion. Phytopathology 80:925929.Google Scholar
4. Anderson, P. C. and Georgeson, M. 1989. Herbicide-tolerant mutants of corn. Genome 31:994999.Google Scholar
5. Anderson, R. M., May, R. M., Boily, M. C., Garnett, G. P., and Rowley, J. P. 1991. The spread of HIV-1 in Africa: sexual contact patterns and the predicted demographic impact of AIDS. Nature 352:581589.CrossRefGoogle ScholarPubMed
6. Anonymous. 1991. A Benefit/Risk Assessment for the Introduction of Herbicide Tolerance Crops in Iowa, Iowa State University, Ames. 15 p.Google Scholar
7. Arditi, R. and Berryman, A. A. 1991. The biological control paradox. Trends Ecol. Evol. 6:32.Google Scholar
8. Bewick, T. A., Stall, W. M., Kostewicz, S. R., and Smith, K. 1991. Alternatives for control of paraquat tolerant American black nightshade (Solanum americana). Weed Technol. 5:6165.Google Scholar
9. Burnet, M.W.M., Hillebrand, O. B., Holtum, J.A.M., and Powles, S. B. 1991. Amitrole, triazine, substituted urea, and metribuzin resistance in a biotype of rigid ryegrass (Lolium rigidum). Weed Sci. 39:317323.CrossRefGoogle Scholar
10. Chapin, G. and Wasserstrom, R. 1981. Agricultural production and malaria resurgence in Central America and India. Nature 293:181185.Google Scholar
11. Chauval, B., Gasquez, J., and Darmency, H. 1989. Changes in weed seed parameters according to species, time and environment. Weed Res. 28:213219.Google Scholar
12. Christopher, J. T., Powles, S. B., Liljegren, D. R., and Holtum, J.A.M. 1991. Cross resistance to herbicides in annual ryegrass (Lolium rigidum). 2. Chlorsulfuron resistance involves a wheat like detoxification system. Plant Physiol. 95:10361043.Google Scholar
13. Christy, A. L. 1992. Syngerizing biocontrol agents with synthetic compounds. in press in Duke, S. O., Menn, J. J., and Plimmer, J. R., eds. Newer Pest Control Agents and Technology with Reduced Environmental Impact. Am. Chem. Soc., Washington, D.C. Google Scholar
14. Connick, W. J. Jr., Daigle, D. J., and Quimby, P. C. Jr. 1991. An improved invert emulsion with high water retention for mycoherbicide delivery. Weed Technol. 5:442444.Google Scholar
15. Cramer, J. R. and Linscott, D. L. 1991. Effects of droplet composition on glyphosate absorption and translocation in velvet leaf (Abutilon theophrasti). Weed Sci. 39:251254.Google Scholar
16. Darmency, H. and Gasquez, J. 1983. Interpreting the evolution of a triazine-resistant population of Poa annua L. New Phytol. 95:299304.Google Scholar
17. Darmency, H. and Pernes, J. 1985. Use of wild Setaria viridis (L.) Beauv. to improve triazine resistance in cultivated S. italica (L.) by hybridization. Weed Res. 25:175179.Google Scholar
18. Dawson, J. H. 1990. Dodder (Cuscuta spp.) control with dinitroaniline herbicides in alfalfa (Medicago sativa). Weed Tecnol. 4:341348.Google Scholar
19. Dawson, J. H. 1990. Dodder (Cuscuta spp.) control in newly seeded alfalfa (Medicago sativa) with glyphosate. Weed Technol. 4:880885.Google Scholar
20. Dennill, G. B. and Hokkanen, H.M.T. 1990. Homeostasis and success in biological control of weeds–a question of balance. Agric. Ecosyst. Envir. 33:110.Google Scholar
21. Deo, S. D. 1991. Implications of biotechnologies for third world agriculture: lessons of the past and prospects. p. 1925 in Sasson, A. and Costarini, V., eds. Biotechnologies in Perspective: Socioeconomic Implications for Developing Countries, UNESCO, Paris.Google Scholar
22. Diesenhofer, J. and Michel, H. 1989. The photosynthetic reaction center from the purple bacterium (Rhodopseudomonas viridis) – Nobel Lecture. EMBO J. 8:21702178.Google Scholar
23. Doyle, J. D., Short, K. A., Stotzky, G., King, R. J., Seidler, R. J., and Olsen, R. H. 1991. Ecologically significant effects of Pseudomonas putida PPO301 (pRO103) genetically engineered to degrade 2,4-dichlorophenoxyacetate on microbial population and processes in soils. Can. J. Microbiol. 37:682691.Google Scholar
24. Duke, S. O. 1990. Natural pesticides from plants. p. 511518 in Janick, J. and Simon, J. E., eds. Advances in New Crops, Timber Press, Portland, OR.Google Scholar
25. Durner, J., Thiel, A., and Böger, P. 1986. Phenolic herbicides correlation between lipophilicity and increased inhibitor sensitivity in thylakoids from higher plant mutants. Z. Naturforsch. 41c:881884.Google Scholar
26. Erickson, J. M., Pfister, K., Rahire, M., Togasaki, R. K., Mets, L, and Rochaix, J. D. 1989. Molecular and biophysical analysis of herbicide-resistant mutants of Chlamydomonas reinhardtii. Structure-function relationships of the photosystem II D1 polypeptide. Plant Cell 1: 361371.Google Scholar
27. Felton, W. L. 1990. Use of weed detection for fallow weed control. Proc. Great Plains Conservation Tillage Symp. Great Plains Agric. Counc. Bull. 131. p. 241244.Google Scholar
28. Foy, C. L., Jain, R., and Jacobsohn, R. 1989. Recent approaches for chemical control of broomrape (Orobanche spp.) Rev. Weed Sci. 4: 123152.Google Scholar
29. Frear, D. S., Swanson, H. R., and Thalacker, F. W. 1991. Induced microsomal oxidation of diclofop, triasulfuron, chlorsulfuron and linuron in wheat. Pestic. Biochem. Physiol. 41:274278.Google Scholar
30. Fuerst, E. P., Arntzen, C. J., Pfister, K., and Penner, D. 1986. Herbicide cross resistance in triazine-resistant biotypes of four weed species. Weed Sci. 34:344353.Google Scholar
31. Gawronski, S. W., Luczak, M., and Przepiorkowski, T. 1991. Negative cross resistance of triazine-resistant biotypes of Echinochloa crus-galli and Erigeron canadensis . Abstr. Soc. Chem. Ind. Symp., Rothamsted.Google Scholar
32. Ghadim, A.K.A. and Pannell, D. J. 1991. Economic trade off between pasture production and crop weed control. Agric. Syst. 36:115.Google Scholar
33. Glasgow, J. L., Mojica, E., Baker, D. R., Tillis, H., Gore, N. R., and Kurtz, P. J. 1987. SC-0574-A new selective herbicide for use in winter cereals. Br. Crop. Prot. Conf.-Weeds. p. 2733.Google Scholar
34. Goldburg, R., Rissler, J., Shand, H., and Hassebrook, C. 1990. Biotechnology's Bitter Harvest. Environmental Defense Fund. New York. 73 p.Google Scholar
35. Gressel, J. 1988. Multiple resistances to wheat selective herbicides: new challenges to molecular biology. Oxford Surv. Plant Mol. Cell Biol. 5:195203.Google Scholar
36. Gressel, J. 1988. Wheat Herbicides: The Challenge of Emerging Resistance, Biotechnology Affiliates, Checkendon/Reading, U.K. 247 p.Google Scholar
37. Gressel, J. 1990. Synergizmg herbicides. Rev. Weed Sc. 5:4982.Google Scholar
38. Gressel, J. 1992. The needs for new herbicide-resistant crops. in press in Denholm, I., Devonshire, A. and Hollomon, D., eds., Achievements and Developments in Combating Pesticide Resistance. Elsevier, London.Google Scholar
39. Gressel, J. and Segel, L. A. 1990. Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol. 4:186198.Google Scholar
40. Gressel, J. and Segel, L. A. 1990. Negative cross-resistance: a possible key to atrazine resistance management: a call for whole plant data. Z. Naturforsch. 45c:470473.Google Scholar
41. Gressel, J. and Shaaltiel, Y. 1988. Biorational herbicide synergists. p. 424 in Hedin, P. A., Menn, J. J., and Hollingworth, R. M., eds. Biotechnological Approaches to Plant Protection. Am. Chem. Soc. Symp. Ser. 379, Am. Chem. Soc., Washington, D.C. Google Scholar
42. Gronwald, J. W., Eberlein, C. B., Betts, K. J., Rosow, K. M., Ehlke, N. J., and Wyse, D. L. 1989. Diclofop resistance in a biotype of Italian ryegrass. Plant Physiol. 89S, 115 Google Scholar
43. Harrison, H. F. Jr. and Peterson, J. K. 1991. Evidence that sweet potato (Ipomea batatas) is allelopathic to yellow nutsedge (Cyperus esculentus). Weed Sci. 39:302312.Google Scholar
44. Hartman, G. L. and Tanimonure, O. A. 1991. Seed populations of Striga species in Nigeria. Plant Dis. 75:494496.Google Scholar
45. Hartmann, K. M. and Nezadal, W. 1990. Photocontrol of weeds without herbicides. Die Naturwissenschaften. 77:158163.Google Scholar
46. Heap, I. M. 1988. Resistance to herbicides in annual ryegrass (Lolium rigidum). Ph.D. Thesis, Waite Agric. Inst., Univ. of Adelaide. 162 p.Google Scholar
47. Heitefuss, R., Gerowitt, B., and Wahmhoff, W. 1987. Development and implementation of weed economic thresholds in the Federal Republic of Germany. Brit. Crop. Protect. Conf.-Weeds p. 10251034.Google Scholar
48. Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds – Distribution and Biology, Univ. Press of Hawaii, Honolulu. 609 p.Google Scholar
49. Holt, J. S. and LeBaron, H. M. 1990. Significance and distribution of herbicide resistance. Weed Technol. 4:141149.Google Scholar
50. Joel, D. M. 1992. Control of broomrape (Orobanche aegyptiaca Pers.) with chlorsulfuron on a transgenic sulfonylurea resistant crop. Abstr. Weed Sci. Soc. Am. 32 No. 193.Google Scholar
51. Keeler, K. H. and Turner, C. E. 1991. Management of transgenic plants in the environment. p. 189218 in Levin, M. and Strauss, H., eds. Risk Assessment in Genetic Engineering. McGraw-Hill, New York.Google Scholar
52. Kline, A. D. 1991. We have not yet identified the heart of the moral issues in agricultural biotechnology. J. Agric. Envir. Ethics 4:216222.Google Scholar
53. Krueger, J. P., Butz, R. G., and Cork, D. J. 1991. Use of dicambadegrading microorganisms to protect dicamba susceptible plant species. J. Agric. Food. Chem. 39:10001003.Google Scholar
54. Lamoureux, G. L. and Rusness, D. G. 1986. Tridiphane [2-(3,5-dichlorophenyl)-2-(2,2,2-trichloroethyl)oxirane] an atrazine synergist: Enzymatic conversion to potent glutathione-S-transferase inhibitor. Pestic. Biochem. Physiol. 26:323332.Google Scholar
55. Lamoureux, G. L. and Rusness, D. G. 1987. Synergism of diazinon toxicity and inhibition of diazinon metabolism in the house fly by tridiphane: inhibition of glutathione-S-transferase activity. Pestic. Biochem. Physiol. 27:318329.Google Scholar
56. LeBaron, H. M., McFarland, J. E., Simoneaux, B. J., and Ebert, E. 1988. Metolachlor p. 336382 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides-Chemistry Degradation and Mode of Action. Vol. 3. Marcel Dekker, New York.Google Scholar
57. Lines, J. D. 1988. Do agricultural insecticides select for insecticide resistance in mosquitos? A look at the evidence. Parisitology Today 4: S17S20.Google Scholar
58. Liu, Z. Q. and Fer, A. 1990. Influence d'un parasite (Cuscuta lupuliformis Krock) sur la redistribution de deux herbicides systemiques appliques sur une legumineuse (Phaselolus aureus Roxb.) C. R. Acad. Sci. Paris. 311:333339.Google Scholar
59. Maxwell, B. P., Roush, M. L., and Radosevich, S. R. 1990. Predicting the evolution and dynamics of herbicide resistant populations. Weed Technol. 4:213.Google Scholar
60. McMullen, M. P., Dexter, A. G., Nalewaja, J. D., Hamlin, W., and Davison, K. 1985. Pesticide use on major crops in North Dakota, North Dakota State Univ., Fargo.Google Scholar
61. McNally, S. F., Ortebamjo, T. O., Hirel, B., and Stewart, G. R. 1983. Glutamine synthetase isoenzymes of Striga hermonthica and other angiosperm root parasites. J. Exp. Bot. 34:610619.Google Scholar
62. McNally, S. F. and Stewart, G. R. 1987. Inorganic nitrogen assimilation by parasitic angiosperms. p. 539546 in Weber, H. C. and Forstreuter, W., eds. Proc. 4th Intl. Symp. Parasitic Flowering Plants, Marburg, F.R.G. Google Scholar
63. Miki, B. I., Labbe, H., Hattori, J., Ouellet, T., Gabard, J., Sunohara, G., Charest, P. J., and Iyer, V. N. 1990. Transformation of Brassica napus canola cultivars with Arabidopsis thaliana acetohydroxyacid synthase genes and analysis of herbicide resistance. Theor. Appl. Genet. 80: 449458.Google Scholar
64. Minyard, J. P. Jr. and Roberts, W. E. 1991. Chemical contaminants monitoring-State findings on pesticide residues in foods–1988 and 1989. J. Assoc. Off. Anal. Chem. 74:438452.Google Scholar
65. Moreland, D. E., Corbin, F. T., Novitzky, W. P., Parker, C. E., and Tomer, K. B. 1990. Metabolism of metolachlor by a microsomal fraction isolated from grain sorghum (Sorghum bicolor) shoots. Z. Naturforsch. 45c:558564.CrossRefGoogle Scholar
66. Morrison, I. N., Todd, B. G., and Nawolsky, K. M. 1989. Confirmation of trifluralin-resistant green foxtail (Setaria viridis) in Manitoba. Weed Technol. 3:544551.Google Scholar
67. Moss, S. R., and Cussans, G. W. 1991. The development of herbicide-resistant populations of Alopecurus myosuroides (blackgrass) in England. p. 4556 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops, Butterworths, Oxford.Google Scholar
68. Mulbry, W. and Kearney, P. C. 1991. Degradation of pesticides by microorganisms and the potential for genetic manipulation. Crop Prot. 10:334346.Google Scholar
69. O'Donovan, J. P., Sharma, M. P., Newman, J. C., and Feddema, H. 1992. Triahate resistant wild oats are cross-resistant to difenzoquat. Abstr. Weed Sci. Soc. Am. 32: No. 265.Google Scholar
70. Oettmeier, W., Masson, K., Fedtke, C., Konze, J., and Schmidt, R. R. 1982. Effect of different photosystem II inhibitors on chloroplasts isolated from species either susceptible or resistant toward s-triazine herbicides. Pestic. Biochem. Physiol. 18:357367.Google Scholar
71. Oettmeier, W., Hilp, U., Draber, W., Fedtke, C., and Schmidt, R. R. 1991. Structure-activity relationships of triazinone herbicides on resistant weeds and resistant Chlamydomonas reinhardtii . Pestic. Sci. 33: 399409.Google Scholar
72. Parker, C. 1991. Protection of crops against parasitic weeds. Crop Prot. 10:621.Google Scholar
73. Piper, T. J. 1990. Field trials on diclofop-methyl tolerant wild oats (Avena fatua). p. 211213 in Heap, J. W., ed. Proc. 9th Australian Weeds Conf., Univ. Adelaide Printing Sect., Adelaide.Google Scholar
74. Porterfield, J. W. 1989. Harvest equipment should address weed seed problems. Agric. Eng. (Jan/Feb), 11.Google Scholar
75. Powles, S. B. and Matthews, J. M. 1992. Multiple herbicide resistance in annual ryegrass (Lolium rigidum). A driving force for the adoption of integrated weed management. in press in Denholm, I., Devonshire, A., and Hollomon, D., Eds. Achievements and Developments in Combating Resistance. Elsevier, London.Google Scholar
76. Putwain, P. D., Scott, K. R., and Holliday, R. J., 1982. The nature of resistance of triazine herbicides: case histories of phenology and population studies. p. 99116 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants, Wiley, New York.Google Scholar
77. Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93:5561.Google Scholar
78. Sand, P. F. and Manley, J. D. 1990. The witchweed eradication program, survey, regulatory and control. p. 141151 in Witchweed Research and Control in the United States, WSSA Monograph Ser. 5, Weed Sci. Soc. Am., Champaign, IL.Google Scholar
79. Sauerborn, J. 1991. The economic importance of the phytoparasites Orobanche and Striga . p. 137143 in Proc. 5th Intl. Symp. on Parasitic Weeds, CIMMYT, Nairobi.Google Scholar
80. Schloss, J. V., Ciskanik, L. M., and Van Dyk, D. E. 1988. Origin of the herbicide binding site of acetolactate synthase. Nature 331:360362.Google Scholar
81. Seefeldt, S. S., Gealy, D. R., and Fuerst, E. P. 1982. Investigations of diclofop-resistant wild oat (Avena fatua L.) biotypes from Oregon. Abstr. Weed Sci. Soc. Am. 32: No. 266.Google Scholar
82. Sharon, A., Amsellem, Z., and Gressel, J. 1992. Glyphosate suppression of induced defense responses: increased susceptibility of Cassia obtusifolia to a mycoherbicide. Plant Physiol. 98:654659.Google Scholar
83. Sharp, D. B. 1988. Alachlor. p. 301333 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides-Chemistry, Degradation and Mode of Action, Vol. 3, Dekker, New York.Google Scholar
84. Shearer, S. A. and Jones, P. T. 1991. Selective application of postemergence herbicides using photoelectrics. Trans. Am. Soc. Agric. Eng. 34:16611666.Google Scholar
85. Shigematsu, Y., Sato, F., and Yamada, Y. 1989. The mechanism of herbicide resistance in tobacco cells with a new mutation in the QB protein. Plant Physiol. 89:986990.Google Scholar
86. Sly, J.M.A. 1986. Review of usage of pesticides in agriculture, horticulture and animal husbandry in England and Wales 1980–1983. Survey Report 41, Min. Agric. Food, Fisheries, London.Google Scholar
87. Stewart, G. 1990. Witchweed: a parasitic weed of grain crops. Outlook Agric. 19:115117.Google Scholar
88. Stewart, G. R. and Press, M. C. 1990. The physiology and biochemistry of parasitic angiosperms. Annu. Rev. Plant Physiol. Mol. Biol. 41: 127151.Google Scholar
89. Tauer, L. W. and Love, J. 1989. The potential economic impact of herbicide-resistant corn in the U.S.A. J. Prod. Agric. 2:202207.Google Scholar
90. TeBeest, D. O. (ed.). 1991. Microbial Control of Weeds. Chapman and Hall, New York. 284 p.Google Scholar
91. Trebst, A. 1991. The molecular basis of resistance of photosystem II. p. 145164 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Butterworths, Oxford.Google Scholar
92. Wolf, S. J. and Timko, M. P. 1991. In vitro root culture: a novel approach to study the obligate parasite Striga asiatica (L.) Kuntze. Plant Sci. 73:233242.Google Scholar
93. Wolfe, M. S., Hartleb, H., Sachs, E., and Zimmerman, H. 1991. Shorten-mischungen von Braugerste und gesünder. Pflanzenschutz-Praxis 2: 3335.Google Scholar
94. Ziegler, C. E. 1991. Essay: The second bottom line. Scientific American (Aug.) p. 96.Google Scholar