Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T14:26:52.251Z Has data issue: false hasContentIssue false

Acetolactate Synthase Resistance in a Common Waterhemp (Amaranthus rudis) Population

Published online by Cambridge University Press:  12 June 2017

John R. R. Hinz
Affiliation:
Dep. of Agron., Iowa State Univ., Ames, IA 50011
Micheal D. K. Owen
Affiliation:
Dep. of Agron., Iowa State Univ., Ames, IA 50011

Abstract

Research was initiated to determine (a) whether a common waterhemp population was resistant to acetolactate synthase (ALS) inhibiting herbicides, (b) the percentage of the population that was ALS-inhibitor resistant, (c) the resistance mechanism, and (d) the effectiveness of a whole plant assay to detect ALS-inhibitor resistance. ALS-inhibitor resistance was confirmed in a common waterhemp population near Davis City, IA. The Davis City common waterhemp population was cross resistant to both imidazolinone and sulfonylurea herbicides, but not to lactofen. Approximately 10% of the Davis City common waterhemp population was sensitive to a rate of imazaquin 4 times the normal field rate. Davis City common waterhemp isolated ALS was much less sensitive to imazaquin and primisulfuron inhibition than was grain amaranth or an ALS-sensitive common waterhemp isolated ALS. Imazaquin I50 values were 366.4 and 3.4 μM for ALS isolated from Davis City common waterhemp and grain amaranth, respectively. Primisulfuron I50 values were 3.6 and 0.007 μM for ALS isolated from Davis City common waterhemp and grain amaranth, respectively. A whole plant ALS assay was developed that allowed for much more rapid detection of an ALS-resistant species and used less plant material than a conventional ALS assay.

Type
Research
Copyright
Copyright © 1997 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Alcocer-Ruthling, M., Thill, D. C., and Shafii, B. 1992. Differential competitiveness of sulfonylurea resistant and susceptible prickly lettuce (Lactuca serriola). Weed Technol. 6:303309.CrossRefGoogle Scholar
2. Bader, B. M., DeFelice, M. S., Dilbeck, J. S., and Holman, C. S. 1994. Herbicide resistant weed populations discovered in Missouri. Proc. North Cent. Weed Sci. Soc. 49:8990.Google Scholar
3. Bernasconi, P., Woodworth, A. R., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270:1738117385.Google Scholar
4. Boutsalis, P., and Powles, S. B. 1995. Resistance of dicot weeds to acetolactate synthase (ALS)-inhibiting herbicides in Australia. Weed Res. 35:149155.Google Scholar
5. Brown, H. M., 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic. Sci. 29:263281.Google Scholar
6. Burton, J. D., Maness, E. M., Monks, D. W., and Robinson, D. K. 1994. Sulfonylurea selectivity and safener activity in ‘Landmark’ and ‘Merit’ sweet corn. Pestic. Biochem. Physiol. 48:163172.Google Scholar
7. Gerwick, B. C., Mirles, L. C., and Eilers, R. J. 1993. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol. 7:519524.Google Scholar
8. Guttieri, M. J., Eberlein, C. V., and Thill, D. C. 1995. Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci. 43:175178.Google Scholar
9. Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., Thill, D. C., and Hoffman, D. L. 1992. DNA sequence variation in domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci. 40:670677.Google Scholar
10. Hinz, J.R.R., and Owen, M.D.K. 1996. Nicosulfuron and primisulfuron selectivity in corn (Zea mays L.) and two annual grasses. Weed Sci. 44:219223.Google Scholar
11. Horak, M. J., and Peterson, D. E. 1995. Biotypes of palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9:192195.CrossRefGoogle Scholar
12. Mazur, B. J., and Falco, S. C. 1989. The development of herbicide resistant crops. Annu. Rev. Pant Physiol. 40:441470.Google Scholar
13. Rathinasabapathi, B., and King, J. 1991. Herbicide resistance in Datura innoxia. Plant Physiol. 96:255266.Google Scholar
14. Saari, L. L., Cotterman, J. C., Smith, W. F., and Primiani, M. M. 1992. Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass, and Russian thistle. Pestic. Biochem. Physiol. 42:110118.CrossRefGoogle Scholar
15. Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia. Plant Physiol. 93:5561.Google Scholar
16. Siehl, D. L., Bengtson, A. S., Brockman, J. P., Butler, J. H., Kraatz, G. W., Lamoreaux, R. J., and Subramanian, M. V. 1995. Patterns of cross-tolerance to herbicides inhibiting acetohydroxyacid synthase in commercial corn hybrids designed for tolerance to imidazolinones. Crop Sci. (in press).Google Scholar
17. Simpson, D. M., Stoller, E. W., and Wax, L. M. 1995. An in vivo acetolactate synthase assay. Weed Technol. 9:1722.Google Scholar
18. Sprague, C. L., Wax, L. M., and Stoller, E. W. 1995. Characteristics of ALS-resistant Amaranthus spp. Proc. North Cent. Weed Sci. Soc. 50:119.Google Scholar
19. Subramanian, M. V., Hung, H. Y., Dias, J. M., Miner, V. M., Butler, J. H., and Jachetta, J. J. 1990. Properties of mutant acetolactate synthases resistant to triazolopyrimidine sulfonanilide. Plant Physiol. 94:239244.Google Scholar
20. Sweester, P. B., Schow, G. S., and Hutchinson, J. M. 1982. Metabolism of chlorsulfuron by plants: basis for selectivity of a new herbicide for cereals. Pestic. Biochem. Physiol. 17:1823.Google Scholar
21. Thompson, C. R., Thill, D. C., and Shafii, B. 1994. Growth and competitiveness of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 42:172179.CrossRefGoogle Scholar