Article contents
Winter wheat competition against jointed goatgrass (Aegilops cylindrica) as influenced by wheat plant height, seeding rate, and seed size
Published online by Cambridge University Press: 20 January 2017
Abstract
Jointed goatgrass is a troublesome weed in winter wheat with selective control only possible with a herbicide-resistant crop. Even with herbicide-resistant wheat, cultural control is still an important part of jointed goatgrass management. A study was conducted in 1998 and 2000 to determine whether using larger sized seed of a tall wheat variety at an increased seeding rate would reduce the effect of jointed goatgrass on winter wheat. Wheat seed size, seeding rate, and variety height had no effect on jointed goatgrass plant density. Tall (∼130 cm) wheat reduced mature jointed goatgrass biomass 46 and 16% compared with short (∼100 cm) wheat in years 1 and 2 of the experiment, respectively. Spikelet biomass was also reduced approximately 70 and 30% in the same respective years. One thousand–spikelet weight of jointed goatgrass was reduced 37 and 7% in years 1 and 2, respectively, when grown in competition with taller compared with shorter wheat. Moreover, dockage was 80 and 30% less in years 1 and 2, respectively, when grown in competition with taller than shorter wheat. Mature jointed goatgrass height was similar regardless of the competitive wheat height. However, jointed goatgrass was as much as 18% taller than the short wheat and 15% shorter than the tall wheat. Seeding rate had the most consistent effect on wheat yield. Wheat seed yield was about 10% greater with 60 than 40 seed m−1 of row when competing with jointed goatgrass. Results of this study indicate that growers could use a tall winter wheat variety to improve crop competition against jointed goatgrass. Results also indicate that plant breeders should consider plant height because herbicide-resistant varieties are developed for the integrated management of jointed goatgrass.
Keywords
- Type
- Weed Biology and Ecology
- Information
- Copyright
- Copyright © Weed Science Society of America
References
Literature Cited
- 30
- Cited by