Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T19:07:35.865Z Has data issue: false hasContentIssue false

Vapor Absorption and Translocation of Dinitroaniline Herbicides in Oats (Avena sativa) and Peas (Pisum sativum)

Published online by Cambridge University Press:  12 June 2017

G. L. Jacques
Affiliation:
Dep. Agron., Univ. of Wisconsin, Madison, WI 53706
R. G. Harvey
Affiliation:
Dep. Agron., Univ. of Wisconsin, Madison, WI 53706

Abstract

Roots or shoots of oats (Avena sativa L. ‘Dal’) and peas (Pisum sativum L. ‘Early Perfection’) were exposed to vapors of 14C-labeled benefin (N-butyl-N-ethyl-α,α,α-trifluoro-2,6-dinitro-p-toluidine), dinitramine (N4,N4-diethyl-α,α,α-trifluoro-3,5-dinitrotoluene-2,4-diamine), fluchloralin [N-(2-chloroethyl)-2,6 dinitro-N-propyl-4-(trifluoromethyl)aniline], oryzalin (3,5-dinitro-N4,N4-dipropylsulfanilamide), profluralin [N-(cyclopropylmethyl)-α,α,α-trifluoro-2,6-dinitro-N-propyl-p-toluidine], and trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine). All of the dinitroaniline herbicides except oryzalin were absorbed by roots and shoots of germinating oats and peas. Some root-shoot translocation of the herbicides was observed in peas, but no shoot-root transport could be detected in either peas or oats. In peas, 14C from root-absorbed benefin, fluchloralin, profluralin and trifluralin was detected in shoots, and 14C from benefin and trifluralin was detected in cotyledons. In general, vapor absorption was correlated with rates of herbicide volatilization.

Type
Research Article
Copyright
Copyright © 1979 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ashton, F. M. and Crafts, A. S. 1973. Dinitroanilines. Pages 221235 in Mode of action of herbicides. John Wiley and Sons, Inc., New York.Google Scholar
2. Bardsley, C. E., Savage, K. E., and Walker, J. C. 1968. Trifluralin behavior in soil. II. Volatilization as influenced by concentration, time, soil moisture content, and placement, Agron. J. 60:8991.CrossRefGoogle Scholar
3. Barrentine, W. L. and Warren, G. F. 1971. Differential phytotoxicity of trifluralin and nitralin. Weed Sci. 19:3137.Google Scholar
4. Funderburk, H. H. Jr., Schultz, D. P., Negi, N. S., Rodriguez-Kabana, R., and Curl, E. A. 1967. Metabolism of trifluralin by soil microorganisms and higher plants. Proc. South. Weed Conf. 20:389.Google Scholar
5. Golab, T., Herberg, R. J., Gramlich, J. V., Ruan, A. P., and Probst, G. W. 1970. Fate of benefin in soils, plants, artificial rumen fluid, and the ruminant animal. J. Agric. Food Chem. 18:838844.CrossRefGoogle ScholarPubMed
6. Golab, T., Herberg, R. J., Parka, S. J., and Tepe, J. B. 1967. Metabolism of carbon-14 trifluralin in carrots. J. Agric. Goof Chem. 15:638641.Google Scholar
7. Harvey, R. G. 1973. Field comparison of twelve dinitroaniline herbicides. Weed Sci. 21:512516.CrossRefGoogle Scholar
8. Harvey, R. G. 1973. Relative phytotoxicities of dinitroaniline herbicides. Weed Sci. 21:517520.Google Scholar
9. Harvey, R. G. 1974. Soil adsorption and volatility of dinitroaniline herbicides. Weed Sci. 22:120124.Google Scholar
10. Hawxby, K., Basler, E., and Santelmann, P. W. 1972. Temperature effects on absorption and translocation of trifluralin and methazole in peanuts. Weed Sci. 20:285289.Google Scholar
11. Herbicide Handbook. 1974. Weed Sci. Soc. Amer. 430 pp.Google Scholar
12. Jacques, G. L. 1976. Factors influencing the herbicidal activity of dinitroaniline herbicides. Diss. Abstr. 37:3192B.Google Scholar
13. Ketchersid, M. L., Bovey, R. W., and Merkle, M. G. 1969. The detection of trifluralin vapors in air. Weed Sci. 17:484485.Google Scholar
14. Lavy, T. L. 1975. Effects of soil pH and moisture on the direct radioassay of herbicides in soil. Weed Sci. 23:4952.Google Scholar
15. Long, J. W., Thompson, L. Jr., and Rieck, C. E. 1974. Absorption, accumulation, and metabolism of benefin, diphenamid, and pebulate by tobacco seedlings. Weed Sci. 22:4247.Google Scholar
16. Murray, D. S., Santelmann, P. W., and Greer, H. A. L. 1973. Differential phytotoxicity of several dinitroaniline herbicides. Agron. J. 65:3436.Google Scholar
17. Parochetti, J. V. and Hein, E. R. 1973. Volatility and photodecomposition of trifluralin, benefin, and nitralin. Weed Sci. 21:469473.Google Scholar
18. Penner, D. 1971. Effect of temperature on phytotoxicity and root uptake of several herbicides. Weed Sci. 19:571576.CrossRefGoogle Scholar
19. Probst, G. W. and Tepe, J. B. 1969. Trifluralin and related compounds. Pages 255282 in Kearney, P. C. and Kaufman, P. D., eds. Degradation of herbicides. Marcel Dekker, Inc., New York.Google Scholar
20. Probst, G. W., Golab, T., Herberg, R. J., Holzer, F. J., Parka, S. J., Van Der Schans, C., and Tebe, J. B. 1967. Fate of trifluralin in soils and plants. J. Agric. Food Chem. 15:592599.CrossRefGoogle Scholar
21. Schultz, D. P., Funderburk, H. H. Jr., and Negi, N. S. 1968. Effect of trifluralin on growth, morphology, and nucleic acid synthesis. Plant physiol. 43:265273.Google Scholar
22. Spencer, W. F. and Cliath, M. M. 1974. Factors affecting vapor loss of trifluralin from soil. J. Agric. Food Chem. 22:987991.CrossRefGoogle ScholarPubMed
23. Strang, R. H. and Rogers, R. L. 1971. A microradioautographic study of 14C-trifluralin absorption. Weed Sci. 19:363369.Google Scholar
24. Swann, C. W. and Behrens, R. 1972. Phytotoxicity of trifluralin vapors from soil. Weed Sci. 20:143146.Google Scholar
25. Swann, C. W. and Behrens, R. 1972. Trifluralin vapor emission from soil. Weed Sci. 20:147149.CrossRefGoogle Scholar
26. Weber, J. B. and Monaco, T. J. 1972. Review of the chemical and physical properties of the substituted dinitroaniline herbicides. Proc. South. Weed Sci. Soc. 25:3137.Google Scholar
27. Wright, W. L. 1964. Factors influencing the herbicidal activity of trifluralin in the soil. Diss. Abstr. 25:718.Google Scholar
28. Yamaguchi, S. and Crafts, A. S. 1958. Autoradiographic method for studying absorption and translocation of herbicides using 14C-labeled compounds. Hilgardia. 28:161191.Google Scholar