Published online by Cambridge University Press: 12 June 2017
All actively metabolizing cells have an electrical potential difference, negative on the interior, across their membranes. This electrochemical potential gradient is generated primarily by proton-pumping ATPases and provides the driving force for the transport of various ionic and neutral solutes. It is a key element in the energy metabolism of cells. Such factors as alteration of transport processes, energy metabolism, cytoplasmic pH, and membrane permeability have a direct effect on the magnitude of the membrane potential. In a brief survey, diclofop-methyl, diclofop, hydroxydiclofop, CGA 82725, haloxyfop-methyl, haloxyfop, bentazon, dinoseb, 4-hydroxy CIPC, and 2-hydroxy CIPC caused rapid depolarizations of the membrane potential of oat coleoptiles. Chlorsulfuron, dimethipin, propham, CIPC, dicamba, alachlor, metolachlor, napthalic anhydride, and paraquat had no measurable effects. The depolarizing effects of diclofop-reported earlier are used to illustrate the methods and interpretation of plant cell membrane potential measurements. Diclofop and diclofop-methyl affect the membrane properties of sensitive plant cells. Diclofop irreversibly depolarized the membrane potential and increased the proton permeability of sensitive cells but not resistant cells. It also increased the ATPase activity of isolated membrane vesicles. The mechanism through which diclofop exerted its effect is not fully understood. The equipment and techniques required for the intercellular recording of membrane potentials and resistance are described as well as the limitations of the techniques. A method not used in herbicide studies but with great potential for studies of herbicide interactions with membranes is patch clamp. A brief introduction to the methods will be given.