Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T01:07:01.775Z Has data issue: false hasContentIssue false

Uptake, Translocation, and Metabolism of Bentazon by Two Pepper Species (Capsicum annuum and Capsicum chinense)

Published online by Cambridge University Press:  12 June 2017

Aurora M. Baltazar
Affiliation:
Dep. Hortic. Sci., North Carolina State Univ., Raleigh, NC 27650
Thomas J. Monaco
Affiliation:
Dep. Hortic. Sci., North Carolina State Univ., Raleigh, NC 27650

Abstract

Similar uptake and translocation patterns were observed in sweet pepper (Capsicum annuum L. ‘Keystone Resistant Giant’) and hot pepper (Capsicum chinense L. ‘Bohemian Chili’) following foliar applications of 14C-bentazon [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide]. In both species, most of the 14C absorbed remained in the treated leaves, with minimal acropetal and basipetal translocation from the application site. A significantly faster rate of herbicide metabolism occurred in hot pepper at 1 and 4 days after application compared to sweet pepper. Two unidentified metabolites of bentazon were isolated from methanol extracts of the two species.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1984 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Andersen, R. N., Lueschen, W. E., Warnes, D. D., and Nelson, W. W. 1974. Controlling broadleaf weeds in soybeans with bentazon in Minnesota. Weed Sci. 22:136142.Google Scholar
2. Arntzen, C. J., Pfister, K., and Steinback, K. E. 1982. The mechanism of chloroplast triazine resistance: Alterations in the site of herbicide action. Pages 185214 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley and Sons, Inc., New York.Google Scholar
3. Baltazar, A. M., Monaco, T. J., and Peele, D. M. 1984. Bentazon selectivity in hot pepper (Capsicum chinense) and sweet pepper (Capsicum annuum). Weed Sci. 32:243246.Google Scholar
4. Behrendt, S. 1970. Results obtained from use of 3-isopropyl-2,1,3-benzothiadiazin-4-2,2-dioxide in cereals. Proc. 10th Br. Weed Control Conf. 10:3843.Google Scholar
5. Boger, P., Beese, B., and Miller, R. 1977. Long-term effects of herbicides on the photosynthetic apparatus. II. Investigations on bentazon inhibition. Weed Res. 17:6167.Google Scholar
6. Davidson, J. D., Oliverio, V. T., and Peterson, J. I. 1970. Combustion of samples for liquid scintillation counting. Pages 222235 in Bransome, E. D., ed. The Current Status of Liquid Scintillation Counting. Grune and Stratton, New York and London.Google Scholar
7. Genez, A. L. and Monaco, T. J. 1983. Uptake and translocation of terbacil in strawberry (Frageria X ananassa) and goldenrod (Solidago fistulosa). Weed Sci. 31:5662.Google Scholar
8. Genez, A. L. and Monaco, T. J. 1983. Metabolism of terbacil in strawberry (Fragaria X ananassa) and goldenrod (Solidago fistulosa). Weed Sci. 31:221225.Google Scholar
9. Hayes, R. M. and Wax, L. M. 1975. Differential intraspecific responses of soybean cultivars to bentazon. Weed Sci. 23:516521.Google Scholar
10. Irons, S. M. and Burnside, O. C. 1982. Absorption, translocation, and metabolism of bentazon in sunflower (Helianthus annuus). Weed Sci. 30:255259.CrossRefGoogle Scholar
11. Jensen, K.I.N. 1982. The roles of uptake, translocation, and metabolism in the differential intraspecific responses to herbicides. Pages 133162 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley and Sons, Inc., New York.Google Scholar
12. Mahoney, M. D. and Penner, D. 1975. Bentazon translocation and metabolism in soybean and navy bean. Weed Sci. 23:265271.Google Scholar
13. Mahoney, M. D. and Penner, D. 1975. The basis for bentazon selectivity in navy bean, cocklebur, and black nightshade. Weed Sci. 23:272276.Google Scholar
14. Mine, A. and Matsunaka, S. 1975. Mode of action of bentazon: Effect on photosynthesis. Pestic. Biochem. Physiol. 5:444450.Google Scholar
15. Mine, A., Miyakado, M., and Matsunaka, S. 1975. The mechanism of bentazon selectivity. Pestic. Biochem. Physiol. 5:566574.Google Scholar
16. Nalewaja, J. D. and Adamczewski, K. A. 1977. Uptake and translocation of bentazon with additives. Weed Sci. 25:309315.CrossRefGoogle Scholar
17. Otto, S., Beutel, P., Dreschler, N., and Huber, R. 1979. Investigations into the degradation of bentazon in plant and soil. Adv. Pestic. Sci. 2:551556.Google Scholar
18. Penner, D. 1975. Bentazon selectivity between soybean and Canada thistle. Weed Res. 15:259262.Google Scholar
19. Pfister, K. and Arntzen, C. J. 1979. The mode of action of Photosystem II-specific inhibitors in herbicide-resistant weed biotypes. Z. Naturforsch. 34:9961009.Google Scholar
20. Potter, R. J. and Wergin, W. P. 1975. The role of light in bentazon toxicity to cocklebur: Physiology and ultrastructure. Pestic. Biochem. Physiol. 5:458470.Google Scholar
21. Retzlaff, G. and Hamm, R. 1976. The relationship between CO2 assimilation and the metabolism of bentazon in wheat plants. Weed Res. 16:263266.CrossRefGoogle Scholar
22. Retzlaff, G. and Hamm, R. 1977. Current knowledge on the mode of action of bentazon. Mitt. Biol. Bundesanst. Land Forstwirtsch., Berlin-Dahlem 178:220221.Google Scholar
23. Wills, G. D. 1976. Translocation of bentazon in soybeans and common cocklebur. Weed Sci. 24:536540.Google Scholar
24. Wills, G. D. and McWhorter, C. G. 1972. Effect of temperature, relative humidity, and soil moisture on translocation of bentazon in cocklebur, nutsedge, and soybean plants. Proc. South. Weed Sci. Soc. 25:415419.Google Scholar