Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T05:36:46.325Z Has data issue: false hasContentIssue false

Threelobe Morningglory (Ipomoea triloba) Germination and Response to Herbicides

Published online by Cambridge University Press:  20 January 2017

Bhagirath Singh Chauhan*
Affiliation:
Crop and Environmental Sciences Division, International Rice Research Institute, Los Baños, Philippines
Seth Bernard Abugho
Affiliation:
Crop and Environmental Sciences Division, International Rice Research Institute, Los Baños, Philippines
*
Corresponding author's E-mail: [email protected]

Abstract

Experiments were conducted in the laboratory and screenhouse to determine the effects of scarification; alternating day/night temperatures; light, salt, and water stress; seed burial depth; and rice residue on seed germination and seedling emergence of threelobe morningglory, and to evaluate the response of this weed to commonly available POST herbicides in the Philippines. Germination was stimulated by seed scarification, suggesting that inhibition of germination in this species is mainly due to the hard seed coat. Germination of the scarified seeds was not influenced by the tested temperatures (alternating day/night temperatures of 25/15, 30/20, and 35/25 C) and light. The concentrations of sodium chloride, ranging from 0 to 250 mM, did not influence germination of the scarified seeds of threelobe morningglory. The osmotic potential required for 50% inhibition of maximum germination was −0.35 MPa, although some seeds germinated at −0.6 MPa. Seedling emergence was greatest for the seeds placed on the soil surface (96%), and emergence declined with increased burial depth in soil. The burial depth required for 50% inhibition of maximum emergence was 2.8 cm. No seedlings emerged from a burial depth of 6 cm or greater. Residues of up to 6 Mg ha−1 on the soil surface did not influence seedling emergence of threelobe morningglory. The herbicide 2,4-D at 400 g ai ha−1 provided excellent control of threelobe morningglory when applied at the four-leaf (100%) and six-leaf (97%) stages. However, at the eight-leaf stage, percent control was reduced to 67% and herbicide rate had to be increased twofold to achieve 95% control. The information gained from this study could contribute to developing components of integrated weed management strategies for threelobe morningglory. Soil inversion by tillage to bury weed seeds below their maximum depth of emergence and early application of an effective POST herbicide could serve as important tools for managing threelobe morningglory.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baskin, C. C. and Baskin, J. M. 1998. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego, CA Academic. 666 p.Google Scholar
Benvenuti, S. 2003. Soil texture involvement in germination and emergence of buried weed seeds. Agron. J. 95:191198.CrossRefGoogle Scholar
Bolfrey-Arku, G. E-K., Chauhan, B. S., and Johnson, D. E. 2011. Seed germination ecology of itchgrass (Rottboellia cochinchinensis). Weed Sci. 59:182187.CrossRefGoogle Scholar
Chauhan, B. S. 2011. Crowfootgrass (Dactyloctenium aegyptium) germination and response to herbicides in the Philippines. Weed Sci. 59:512516.CrossRefGoogle Scholar
Chauhan, B. S. and Johnson, D. E. 2008a. Influence of environmental factors on seed germination and seedling emergence of eclipta (Eclipta prostrata) in a tropical environment. Weed Sci. 56:383388.CrossRefGoogle Scholar
Chauhan, B. S. and Johnson, D. E. 2008b. Seed germination and seedling emergence of giant sensitiveplant (Mimosa invisa). Weed Sci. 56:244248.CrossRefGoogle Scholar
Chauhan, B. S. and Johnson, D. E. 2010. The role of seed ecology in improving weed management strategies in the tropics. Adv. Agron. 105:221262.CrossRefGoogle Scholar
Chauhan, B. S., Gill, G., and Preston, C. 2006a. African mustard (Brassica tournefortii) germination in southern Australia. Weed Sci. 54:891897.CrossRefGoogle Scholar
Chauhan, B. S., Gill, G., and Preston, C. 2006b. Influence of environmental factors on seed germination and seedling emergence of rigid ryegrass (Lolium rigidum). Weed Sci. 54:10041012.CrossRefGoogle Scholar
Chauhan, B. S., Gill, G., and Preston, C. 2006c. Factors affecting seed germination of little mallow (Malva parviflora) in southern Australia. Weed Sci. 54:10451050.CrossRefGoogle Scholar
Chauhan, B. S., Gill, G., and Preston, C. 2006d. Tillage system effects on weed ecology, herbicide activity and persistence: a review. Aust. J. Exp. Agric. 46:15571570.CrossRefGoogle Scholar
Culpepper, A. S., Gimenez, A. E., York, A. C., Batts, R. B., and Wilcut, J. W. 2001. Morningglory (Ipomoea spp.) and large crabgrass (Digitaria sanguinalis) control with glyphosate and 2,4-DB mixtures in glyphosate-resistant soybean (Glycine max). Weed Technol. 15:5661.CrossRefGoogle Scholar
Hardcastle, W. S. 1978a. The influence of temperature and acid scarification duration on Ipomoea obscura Hassk. seed germination. Weed Res. 18:8991.CrossRefGoogle Scholar
Hardcastle, W. S. 1978b. Influence of temperature and acid scarification duration on scarlet morningglory (Ipomoea coccinea) seed germination. Weed Sci. 26:261263.CrossRefGoogle Scholar
Holm, L., Doll, J., Holm, E., Pancho, J., and Herberger, J. 1997. World Weeds: Natural Histories and Distribution. New York John Wiley and Sons. 1129 p.Google Scholar
Horax, M. J. and Wax, L. M. 1991. Germination and seedling development of bigroot morningglory (Ipomoea pandurata). Weed Sci. 39:390396.Google Scholar
Howe, O. W. III. and Oliver, L. R. 1987. Influence of soybean (Glycine max) row spacing on pitted morningglory (Ipomoea lacunosa) interference. Weed Sci. 35:185193.CrossRefGoogle Scholar
Jordan, D. L., York, A. C., Griffin, J. L., Clay, P. A., Vidrine, P. R., and Reynolds, D. B. 1997. Influence of application variables on efficacy of glyphosate. Weed Technol. 11:354362.CrossRefGoogle Scholar
Lee, J., Chauhan, B. S., and Johnson, D. E. 2011. Germination of fresh horse purslane (Trianthema portulacastrum) seeds in response to different environmental factors. Weed Sci. 59:495499.CrossRefGoogle Scholar
Michel, B. E. 1983. Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol. 72:6670.CrossRefGoogle ScholarPubMed
Moody, K. 1989. Weeds Reported in Rice in South and Southeast Asia. Los Baños, Laguna, Philippines International Rice Research Institute. 442 p.Google Scholar
Stoller, E. W., Harrison, S. K., Wax, L. M., Regnier, E. E., and Nafziger, E. D. 1987. Weed interference in soybeans (Glycine max). Rev. Weed Sci. 3:155181.Google Scholar
Suwanketnikom, R. and Julakasewee, A. 2004. Hard seededness and germination of small white flower morningglory. Kasetsart J. 38:425433.Google Scholar
Teasdale, J. R. and Mohler, C. L. 1993. Light transmittance, soil temperature, and soil moisture under residue of hairy vetch and rye. Agron. J. 85:673680.CrossRefGoogle Scholar