Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T19:45:22.218Z Has data issue: false hasContentIssue false

Thifensulfuron and Imazethapyr Interaction at the ALS Enzyme in Sulfonylurea-Tolerant Soybean (Glycine max)

Published online by Cambridge University Press:  12 June 2017

David M. Simpson
Affiliation:
North Centr. Region, USDA-ARS, Dep. Agron., Univ. Illinois, 1102 South Goodwin Ave., Urbana, IL 61801
Edward W. Stoller
Affiliation:
North Centr. Region, USDA-ARS, Dep. Agron., Univ. Illinois, 1102 South Goodwin Ave., Urbana, IL 61801

Abstract

Greenhouse and laboratory experiments were conducted to determine if the synergistic injury to sulfonylurea-tolerant soybean (STS soybean) caused by applications of thifensulfuron plus imazethapyr involves an interaction between the herbicides at the ALS enzyme. In vitro ALS from STS soybean (Asgrow 3200) was 10 times more tolerant to thifensulfuron than ALS from non-STS soybean (Williams 82). In vivo ALS was 30% of maximum activity 6 HAT in STS soybean treated with 4.4 g ha−1 thifensulfuron, but 0% of maximum in similarly treated non-STS soybean. Increasing thifensulfuron from 4.4 to 141 g ha−1 did not increase in vivo ALS inhibition in STS soybean, indicating a highly resistant ALS isozyme. Both cultivars responded similarly to imazethapyr in terms of visual injury, in vitro ALS inhibition, and in vivo ALS inhibition. Soybean injury and in vivo ALS inhibition increased with imazethapyr rate in both cultivars. The relationship between imazethapyr inhibition of ALS in vivo and soybean injury was curvilinear. In vitro ALS assays revealed no synergistic interaction between thifensulfuron and imazethapyr at the enzyme level. In vivo ALS activity was reduced to 7 and 10% of controls 24 and 48 HAT by the tank mixture compared to 56 and 84% for thifensulfuron alone and 20 and 28% for imazethapyr alone. These data show that the synergistic increase in soybean injury caused by tank mixing thifensulfuron with imazethapyr results from the cumulative inhibition of ALS, not a synergistic inhibition of the enzyme.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 72: 248254.Google Scholar
2. Brown, H. M. 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic. Sci. 29: 263281.Google Scholar
3. Brown, H. M. and Kearney, P. C. 1991. Plant biochemistry environmental properties, global impact of the sulfonylurea herbicides. Pages 3249 in Baker, D. R., Fenges, J. G., and Moberg, W. K., eds. Synthesis and Chemistry of Agrochemicals II. Am. Chem. Soc., Washington, D.C. Google Scholar
4. Devine, M., Duke, S. O., and Fedtke, C. 1993. Inhibition of amino acid biosynthesis. Pages 251294 in Physiology of Herbicide Action. PTR Prentice-Hall, Inc., Englewood Cliffs, NJ.Google Scholar
5. Diehl, K. E. 1995. In vivo and in vitro inhibition of nicosulfuron metabolism by terbufos metabolites in maize. Pesticide Biochem. Physiol. 51: 137149.Google Scholar
6. Frazier, T. L., Nissen, S. J., Mortensen, D. A., and Meinke, L. J. 1993. The influence of terbufos on primisulfuron absorption and fate in corn (Zea mays). Weed Sci. 41: 664668.Google Scholar
7. Gerwick, B. C., Subramanian, M. V., Loney-Gallant, V. I., and Chandler, D. P. 1990. Mechanism of action of the 1,2,4-triazolo[1,5-a] pyrimidines. Pestic. Sci. 29: 357364.Google Scholar
8. Green, J. M. and Bailey, S. P. 1987. Herbicide interactions with herbicides and other agricultural chemicals. Pages 3761 in McWhorter, C. G. and Gebhardt, M. R., eds. Methods of applying Herbicides. Weed Science Society of America, Champaign, IL.Google Scholar
9. Hahn, K. L. and Hughes, M. R. 1993. Weed control options for “STS” soybeans. Proc. North Cent. Weed Sci. Soc. 48: 80.Google Scholar
10. Hart, S. E., Saunders, J. W., and Penner, D. 1992. Chlorsulfuron-resistant sugarbeet: cross-resistance and physiological basis of resistance. Weed Sci. 40: 378383.Google Scholar
11. Mazur, B. J. and Falco, S. C. 1989. The development of herbicide resistant crops. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 40: 441470.Google Scholar
12. Ray, T. B. 1984. Site of action of chlorsulfuron: Inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75: 827831.Google Scholar
13. Sebastian, S. A., Fader, G. M., Ulrich, J. F., Forney, D. R., and Chaleff, R. S. 1989. Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Sci. 29: 14031408.CrossRefGoogle Scholar
14. Shaner, D. L. and Mallipudi, N. M. 1991. Mechanisms of selectivity of the imidazolinone herbicides. Pages 91102 in Shaner, D.L. and O'Conner, S.L., eds. The Imidazolonone Herbicides. CRC Press., Boca Raton, Fl.Google Scholar
15. Simpson, D. M. 1995. Physiological response of sulfonylurea tolerant soybean to thifensulfuron and imazethapyr. , University of Illinois, Urbana. 101 p.Google Scholar
16. Simpson, D. M., Stoller, E. W., and Wax, L. M. 1995. An in vivo acetolactate synthase assay. Weed Technol. 9: 1722.Google Scholar
17. Stidham, M. A. 1991. Herbicides that inhibit acetohydroxyacid synthase. Weed Sci. 39: 428434.CrossRefGoogle Scholar
18. Stidham, M. A. and Singh, B. K. 1991. Imidazolinone-acetohydroxyacid synthase interactions. Pages 7190 in Shaner, D. L. and O'Conner, S. L., eds. The Imidazolinone Herbicides. CRC Press., Boca Raton, Fl.Google Scholar
19. Wilms, W. C. and Chicoine, T. K. 1992. Update on thifensulfuron treatments for postemergence use in soybeans. Proc. North Cent. Weed Sci. Soc. 47: 117.Google Scholar