Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T22:15:18.707Z Has data issue: false hasContentIssue false

Spatial Variability of Pesticides in Field Soils: Methods for Data Analysis and Consequences

Published online by Cambridge University Press:  12 June 2017

P.S.C. Rao
Affiliation:
Soil Sci. Dep., Univ. Florida, Gainesville, FL 32611
R. J. Wagenet
Affiliation:
Soil Sci. Dep., Univ. Florida, Gainesville, FL 32611

Extract

The spatial variation of measured pesticide concentrations is often a complicating factor in interpreting the results from field studies. This is particularly true when the study objective is quantitative evaluation of pathways of pesticide loss (leaching, degradation) or efficacy. The variation can result from a lack of uniformity in pesticide or water application (an extrinsic factor) or from spatial differences in various physical, chemical, and biological processes (intrinsic factors) that act to transport and transform pesticides in the field. Most research attention to date has not focused on the spatial variation of these basic processes, but rather on the total spatial variation (extrinsic plus intrinsic) in the measured concentrations of residual pesticide.

Type
Research Article
Copyright
Copyright © 1985 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Amoozegar-Fard, A., Nielsen, D. R., and Warrick, A. W. 1982. Soil solute concentration distributions for spatially varying pore water velocities and apparent diffusion coefficients. Soil Sci. Soc. Am. J. 46:38.CrossRefGoogle Scholar
2. Biggar, J. W. and Nielsen, D. R. 1976. Spatial variability of the leaching characteristics of a field soil. Water Resources Res. 12:7884.CrossRefGoogle Scholar
3. Bresler, E., Bielorai, H., and Laufer, A. 1979. Field test of solution flow models in a heterogeneous irrigated cropped soil. Water Resources Res. 15:645652.CrossRefGoogle Scholar
4. Carvello, H. O., Cassel, D. K., Hammond, J., and Bauer, A. 1976. Spatial variability of in-situ unsaturated hydraulic conductivity of Maddock sandy loam. Soil Sci. 121:18.CrossRefGoogle Scholar
5. Cassel, D. K. and Bauer, A. 1975. Spatial variability in soils below depth of tillage: Bulk density and fifteen atmosphere percentage. Soil Sci. Soc. Am. Proc. 39:247250.CrossRefGoogle Scholar
6. Clark, I. 1979. Practical Geostatistics. Appl. Sci. Publ. Ltd., Essex, England. 129 pp.Google Scholar
7. Clay, D. V. and Scott, K. G. 1973. The persistence and penetration of large doses of simazine in uncropped soil. Weed Res. 13:4250.CrossRefGoogle Scholar
8. David, M. 1977. Geostatistical Ore Reserve Estimation. Elsevier Publ., Amsterdam. 364 pp.Google Scholar
9. Dudley, L. M., Wagenet, R. J., and Jurinak, J. J. 1981. Description of soil chemistry during transient solute transport. Water Resources Res. 17:14981504.Google Scholar
10. Fryer, J. D. and Kirkland, K. 1970. Field experiments to investigate long-term effects of repeated applications of MCPA, triallate, simazine and linuron: report after 6 years. Weed Res. 10:133158.CrossRefGoogle Scholar
11. Haan, C. T. 1977. Statistical Methods in Hydrology. Iowa State Univ. Press, Ames, IA. 378 pp.Google Scholar
12. Hald, A. 1952. Statistical Theory with Engineering Applications. John Wiley and Sons, New York.Google Scholar
13. Hammond, L. C., Pritchett, W. L., and Chew, V. 1958. Soil sampling in relation to soil heterogeneity. Soil Sci. Soc. Am. Proc. 22:548552.Google Scholar
14. Hance, R. J., Smith, P. D., Byast, T. H., and Cotterill, E. G. 1976. Variability in the persistence and movement in soils of abnormally high rates of simazine and linuron; some wider implications. Pages 643648 in Proc. Br. Weed Control Conf. Google Scholar
15. Harris, C. I., Woolson, E. A., and Hummer, B. E. 1969. Dissipation of herbicides at three soil depths. Weed Sci. 17:2731.Google Scholar
16. Hornsby, A. G., Rao, P.S.C., Nkedi-Kizza, P., Wheeler, W. B., and Jones, R. B. 1983. Fate of aldicarb in Florida citrus soils: I. Field and laboratory studies. Pages 936958 in Nielsen, D. M. and Curl, M., eds. Proc. Conf. Characterization and Monitoring of the Vadose (Unsaturated) Zone. National Water Well Assoc., Worthington, OH.Google Scholar
17. Horrman, W. D., Kardhuber, B., Ramskiner, K. A., and Eberle, D. O. 1973. Soil sampling for residue analysis. Proc. European Weed Res. Council Symp., Herbicides-Soils. Pages 129140.Google Scholar
18. Karickhoff, S. W. 1981. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soil. Chemosphere 10:833846.CrossRefGoogle Scholar
19. Nielsen, D. R., Biggar, J. W., and Erh, K. T. 1973. Spatial variability of field measured soil-water properties. Hilgardia 42:215260.CrossRefGoogle Scholar
20. Nkedi-Kizza, P., Rao, P.S.C., and Johnson, J. W. 1983. Adsorption of diuron and 2,4,5-T on soil particle size separates. J. Environ. Qual. 12:195197.CrossRefGoogle Scholar
21. Polzin, W. J., Brown, I. F. Jr., Manthey, J. A., and Probst, G. W. 1971. Soil persistence of fungicides: Experimental deisgn, chemical analysis, and statistical evaluation. Pestic. Monit. J. 4:209215.Google Scholar
22. Rao, P.S.C. and Davidson, J. M. 1980. Estimation of pesticide retention and transformation parameters required in nonpoint source pollution models. Pages 2367 in Overcash, M. R. and Davidson, J. M., eds. Environmental Impact of Nonpoint Source Pollution. Ann Arbor Sci. Publ., Ann Arbor, MI.Google Scholar
23. Rao, P.S.C., Edvardson, K.S.V., Ou, L. T., Jessup, R. E., and Nkedi-Kizza, P. 1985. Spatial variability of pesticide sorption and degradation parameters. In Proc. Symp. Evaluation of Pesticides in Groundwater, Am. Chem. Soc. Symp. Series. Am. Chem. Soc., Washington, DC. (In press).CrossRefGoogle Scholar
24. Rao, P.S.C., Nkedi-Kizza, P., Davidson, J. M., and Ou, L. T. 1983. Retention and transformation of pesticides in relation to nonpoint source pollution from croplands. Pages 126140 in Schaller, F. and Bailey, G., eds. Agricultural Management and Water Quality. Iowa State Univ. Press, Ames, IA.Google Scholar
25. Rao, P.S.C., Rao, P. V., and Davidson, J. M. 1977. Estimation of the spatial variability of the soil-water flux. Soil Sci. Soc. Am. J. 41:12081209.Google Scholar
26. Rao, P. V., Rao, P.S.C., Davidson, J. M., and Hammond, L. C. 1979. Use of goodness-of-fit tests for characterizing the spatial variability of soil properties. Soil Sci. Soc. Am. J. 43:274278.Google Scholar
27. Rendu, J. M. 1978. An Introduction to Geostatistical Methods of Mineral Evaluation. S. African Inst. Mining and Metallurgy, Johannesburg. 84 pp.Google Scholar
28. Robinson, E. L. 1976. Herbicide distribution in a block of soil. Weed Sci. 24:420422.CrossRefGoogle Scholar
29. Russo, D. and Bresler, E. 1982. Soil hydraulic properties as stochastic processes. II. Errors of estimates in a heterogeneous field. Soil Sci. Soc. Am. J. 46:2026.Google Scholar
30. Taylor, A. W., Freeman, H. P., and Edwards, W. M. 1971. Sample variability and the measurement of dieldrin content of a soil in the field. J. Agric. Food Chem. 19:832836.Google Scholar
31. Vauclin, M., Vierira, S. R., Vachaud, G., and Nielsen, D. R. 1983. The use of co-Kriging with limited field observations. Soil Sci. Soc. Am. J. 47:175184.Google Scholar
32. Vierira, S. R., Hatfield, J. L., Nielsen, D. R., and Biggar, J. W. 1983. Geostatistical theory and application to variability of some agronomical properties. Hilgardia 52:175.CrossRefGoogle Scholar
33. Vieira, S. R., Nielsen, D. R., and Biggar, J. W. 1981. Spatial variability of field-measured infiltration rate. Soil Sci. Soc. Am. J. 45:10401048.CrossRefGoogle Scholar
34. Wagenet, R. J. and Jurinak, J. J. 1978. Spatial variability of soluble salt content in a Mancos shale watershed. Soil Sci. 126:342349.Google Scholar
35. Wagenet, R. J. and Rao, B. K. 1983. Description of nitrogen movement in the presence of spatially variable soil hydraulic properties. Agric. Water Manage. 6:227242.CrossRefGoogle Scholar
36. Wagenet, R. J. and Rao, P.S.C. 1984. Basic concepts of modeling pesticide fate in the crop root zone. (Weed Sci. 33, Suppl. 2. (In press).Google Scholar
37. Walker, A. and Brown, P. A. 1983. Spatial variability in herbicide degradation rates and residues in soil. Crop Prot. 2:1725.CrossRefGoogle Scholar
38. Wauchope, R. D., Chandler, J. M., and Savage, K. E. 1977. Soil sample variation and herbicide incorporation uniformity. Weed Sci. 25:193196.Google Scholar
39. Webster, R. and Burgess, T. M. 1980. Optimal interpolation and isarithmic mapping of soil properties. I. The semi-variogram and punctual kriging. J. Soil Sci. 37:315331.Google Scholar