Article contents
Spatial distribution, temporal stability, and yield loss estimates for annual grasses and common ragweed (Ambrosia artimisiifolia) in a corn/soybean production field over nine years
Published online by Cambridge University Press: 20 January 2017
Abstract
Weeds generally occur in patches in production fields. Are these patches spatially and temporally stable? Do management recommendations change on the basis of these data? The population density and location of annual grass weeds and common ragweed were examined in a 65-ha corn/soybean production field from 1995 to 2004. Yearly treatment recommendations were developed from field means, medians, and kriging grid cell densities, using the hyperbolic yield loss (YL) equation and published incremental YL values (I), maximum YL values (A), and YL limits of 5, 10, or 15%. Mean plant densities ranged from 12 to 131 annual grasses m−2 and < 1 to 37 common ragweed m−2. Median weed densities ranged from 0 to 40 annual grasses m−2 and were 0 for common ragweed. The grass I values used to estimate corn YL were 0.1 and 2% and treatment was recommended in only 1 yr when the high I value and either the mean or median density was used. The grass I values used for soybean were 0.7 and 10% and estimated YL was over 10% all years, regardless of I value. The common ragweed I values were 4.5 and 6% for corn and 5.1 and 15.6% for soybean. On the basis of mean densities, fieldwide treatment would have been recommended in 6 of 9 yr but in no years when the median density was used. Recommendations on the basis of grid cell weed density and kriging ranged from > 80% of the field treated for grass weeds in 3 of 4 yr in soybean to < 20% of the field treated for common ragweed in 2002 and 2004 (corn). Grass patches were more stable in time, space, and density than common ragweed patches. Population densities and spatial distribution generally were variable enough so that site-specific information within this field would improve weed management decisions.
Keywords
- Type
- Weed Management
- Information
- Copyright
- Copyright © Weed Science Society of America
References
Literature Cited
- 16
- Cited by