Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T05:59:26.276Z Has data issue: false hasContentIssue false

Solanum ptycanthum resistance to acetolactate synthase inhibitors

Published online by Cambridge University Press:  20 January 2017

Dean S. Volenberg
Affiliation:
Department of Agronomy, University of Wisconsin, Madison, WI 53706
Chris M. Boerboom
Affiliation:
Department of Agronomy, University of Wisconsin, Madison, WI 53706

Abstract

Solanum ptycanthum plants putatively resistant to acetolactate synthase (ALS) inhibitors were identified in a Wisconsin Glycine max field in 1999. Three- to four-leaf-stage S. ptycanthum plants in the greenhouse were 150, 120, and 5.9-fold resistant to imazethapyr, imazamox, and primisulfuron, respectively, compared with susceptible plants. In vivo ALS was 170- and less than 20-fold more resistant to imazethapyr and primisulfuron, respectively. These results suggested that the S. ptycanthum accession was highly resistant to imazethapyr and imazamox, and that resistance was associated with insensitive ALS. This is the first confirmed occurrence worldwide of S. ptycanthum resistance to ALS inhibitors.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bassett, I. J. and Munro, D. B. 1985. The biology of Canadian weeds. 67. Solanum ptycanthum Dun., S. nigrum L. and S. sarrachoides Sendt. Can. J. Plant Sci. 65:401414.Google Scholar
Christopher, J. T., Preston, C., and Powles, S. B. 1994. Malathion antagonizes metabolism-based chlorsulfuron resistance in Lolium rigidum . Pestic. Biochem. Physiol. 49:172182.Google Scholar
Foes, M. J., Vigue, G., Stoller, E. W., and Tranel, P. J. 1999. A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Sci. 47:2027.Google Scholar
Gerwick, B. C., Mireles, L. C., and Eilers, R. J. 1993. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol. 7:519524.CrossRefGoogle Scholar
Heap, I. 1999. International Survey of Herbicide-Resistant Weeds. Herbicide Resistance Action Committee and Weed Science Society of America. Internet: www.weedscience.com.Google Scholar
Hermanutz, L. 1991. Outcrossing in the weed Solanum ptycanthum (Solanaceae): a comparison of agrestal and ruderal populations. Am. J. Bot. 78:638646.Google Scholar
Lovell, S. T., Wax, L. M., Horak, M. J., and Peterson, D. A. 1996. Imidazolinone and sulfonylurea resistance in a biotype of common waterhemp (Amaranthus rudis). Weed Sci. 44:789794.Google Scholar
Mallory-Smith, C., Hendrickson, P., and Mueller-Warrant, G. 1999. Cross-resistance of primisulfuron-resistant Bromus tectorum L. (downy brome) to sulfosulfuron. Weed Sci. 47:256257.CrossRefGoogle Scholar
Ogg, A. G. Jr., Rogers, B. S., and Schilling, E. E. 1981. Characterization of black nightshade (Solanum nigrum) and related species in the United States. Weed Sci. 29:2732.Google Scholar
Simpson, D. M., Stoller, E. W., and Wax, L. M. 1995. An in vivo acetolactate synthase assay. Weed Technol. 9:1722 Google Scholar
Sprague, C. L., Stoller, E. W., Wax, L. M., and Horak, M. J. 1997. Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-inhibiting herbicides. Weed Sci. 45:192197.Google Scholar
Stoltenberg, D. E. and Wiederholt, R. J. 1995. Giant foxtail (Setaria faberi) resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides. Weed Sci. 43:527535.Google Scholar