Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T19:58:26.140Z Has data issue: false hasContentIssue false

Sites of Herbicidal Action on Photosynthesis: A Fluorescence Assay Study

Published online by Cambridge University Press:  12 June 2017

H. Böhme
Affiliation:
Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, D-7750 Konstanz, West-Germany
K. J. Kunert
Affiliation:
Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, D-7750 Konstanz, West-Germany
P. Böger
Affiliation:
Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, D-7750 Konstanz, West-Germany

Abstract

The effect of the bleaching and non-bleaching phenylpyridazinones, norflurazon [4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl)-3(2H)-pyridazinone] and BAS 29095 [4,5-dimethoxy-2-phenyl-3(2H)-pyridazinone], on chlorophyll fluorescence of the green alga, Scenedesmus acutus, was investigated and compared to other bleaching herbicides, difunon3 [EMD-IT 5914, 5(dimethylamino-methylene)-2-oxo-4-phenyl-2,5-dihydrofuranecarbonitrile-(3)] and the diphenyl ether, oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene]. Following chlorophyll fluorescence during short-term cultivation in the presence of herbicides and comparing it to physiological parameters such as chlorophyll content and packed cell volume allowed for rapid screening to detect different primary herbicidal modes of action. Two primary bleaching effects caused by either inhibition of carotene biosynthesis (certain substituted pyridazinones and difunon) or peroxidative degradation of membrane lipids (certain diphenyl ethers) led to completely different fluorescence signals. Growth of algae in the presence of a carotene biosynthesis inhibitor resulted in a rapid rise to maximum fluorescence, followed by a single decay phase, whereas bleaching diphenyl ethers led to a rapid loss of total fluorescence. Non-bleaching phenylpyridazinones, which act as weak electron transport inhibitors, inhibited variable fluorescence. Detoxication during algal growth became evident by recovery of the fluorescence induction.

Type
Research Article
Copyright
Copyright © 1981 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bartels, P. G. and Watson, C. W. 1978. Inhibition of carotenoid synthesis by fluridone and norflurazon. Weed Sci. 26:198203.Google Scholar
2. Bauer, R. and Franck, U. F. 1974. Light-induced variable photosystem-II chlorophyll fluorescence as indicator for photosystem-II activity. Pages 171182 in Avron, M., ed. Proc. 3rd Int. Congr. Photosynthesis. Vol. 1. Elsevier Scient. Publ. Co., Amsterdam.Google Scholar
3. Böger, P. and Schlue, U. 1976. Long-term effects of herbicides on the photosynthetic apparatus. I. Influence of diuron, triazines and pyridazinones. Weed Res. 16:149154.Google Scholar
4. Bohner, H., Böhme, H., and Böger, P. 1980. Reciprocal formation of plastocyanin and cytochrome c-553 and the influence of cupric ions on photosynthetic electron transport. Biochim. Biophys. Acta, 592:103112.Google Scholar
5. Brewer, P. E., Arntzen, C. J., and Slife, F. W. 1979. Effects of atrazine, cyanazine, and procyazine on the photochemical reactions of isolated chloroplasts. Weed Sci. 27:300308.Google Scholar
6. Duysens, L. N. M. and Sweers, G. E. 1963. Mechansim of two photochemical reactions in algae as studied by means of fluorescence. Pages 353372 in Japanese Soc. Plant Physiol., eds. Microalgae and Photosynthetic Bacteria. University of Tokyo Press, Tokyo.Google Scholar
7. Govindjee, and Papageorgiou, G. 1971. Chlorophyll fluorescence and photosynthesis: fluorescence transients. Pages 146 in Giese, A. C., ed. Photobiology Vol. VI. Academic Press, New York.Google Scholar
8. Herczeg, T., Lehoczki, E., and Szalay, L. 1979. The prompt effect of pyridazinone herbicides on the primary processes of photosynthesis. FEBS Lett. 108:226228.CrossRefGoogle ScholarPubMed
9. Hilton, J. L., Scharen, A. L., St. John, J. B., Moreland, D. E., and Norris, K. H. 1969. Modes of action of pyridazinone herbicides. Weed Sci. 17:541547.Google Scholar
10. Kautsky, H. and Franck, U. F. 1943. Chlorophyllfluoreszenz und Kohlensäureassimilation. Biochem. Z. 315:139232.Google Scholar
11. Kümmel, H. W. and Grimme, L. H. 1975. Inhibition of carotenoid biosynthesis in green algae by SAN 6706: Accumulation of phytoene and phytofluene in Chlorella fusca . Z. Naturforsch. 30c:333336.Google Scholar
12. Kunert, K. J. and Böger, P. 1978. Action of EMD-IT 5914 on chloroplasts. Weed Sci. 26:292296.CrossRefGoogle Scholar
13. Kunert, K. J. and Böger, P. 1979. Influence of bleaching herbicides on chlorophyll and carotenoids. Z. Naturforsch. 34c:10471051.Google Scholar
14. Kunert, K. J. and Böger, P. 1981. The bleaching effect of the diphenyl ether oxyfluorfen. Weed Sci. 29:169173.Google Scholar
15. Kunert, K. J., Böhme, H., and Böger, P. 1976. Reaction of plastocyanin and cytochrome 553 with photosystem I of Scenedesmus . Biochim. Biophys. Acta 449:541553.CrossRefGoogle ScholarPubMed
16. Lavintman, N., Galling, G., and Ohad, I. 1978. Repair of photosynthetic activity in thylakoids formed at the nonpermissive temperature in a ts mutant of Chlorella . Pages 875884 in Akoyunoglou, G. and Argyroudi-Akoyunoglou, J. H., eds. Chloroplast Development, Elsevier/North Holland Biochemical Press, Amsterdam-New York.Google Scholar
17. Liebermann, J. R., Bose, S., and Arntzen, C. J. 1978. Requirement of the light harvesting pigment protein complex for magnesium ion regulation of excitation energy distribution in chloroplasts. Biochim. Biophys. Acta 502:417429.Google Scholar
18. Papageorgiou, G. 1975. Chlorophyll fluorescence: an intrinsic probe of photosynthesis. Pages 319386 in Govindjee, , ed. Bioenergetics of Photosynthesis, Academic Press, New York.Google Scholar
19. Sandmann, G., Kunert, K. J., and Böger, P. 1979. Biological systems to assay herbicidal bleaching. Z. Naturforsch. 34c: 10441046.Google Scholar
20. Stephenson, G. R., Dilley, D. R., and Ries, S. K. 1971. Influence of light and sucrose on N-glucosyl pyrazon formation in red beet. Weed Sci. 19:406409.Google Scholar
21. Trebst, A. and Harth, E. 1974. Herbicidal N-alkylated ureas and ring-closed N-acylamides as inhibitors of photosystem II. Z. Naturforsch. 29c:232235.Google Scholar
22. Urbach, D., Suchanka, M., and Urbach, W. 1976. Effect of substituted pyridazinone herbicides and of difunon (EMD-IT 5914) on carotenoid biosynthesis in green algae. Z. Naturforsch. 31c:652655.Google Scholar