Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T22:18:50.327Z Has data issue: false hasContentIssue false

A serine-to-threonine mutation in linuron-resistant Portulaca oleracea

Published online by Cambridge University Press:  12 June 2017

Joseph G. Masabni
Affiliation:
Department of Horticulture, Michigan State University, East Lansing, MI 48824-1325

Abstract

We conducted several experiments on linuron-resistant and -susceptible Portulaca oleracea and on atrazine-resistant and -susceptible Chenopodium album to determine their immediate and long-term responses to photosynthesis-inhibiting herbicides. Several photosynthesis-inhibiting herbicides were used, and O2 evolution was measured with a Clark-type O2 electrode. Resistance ratios (RRs) for P. oleracea, based on O2 evolution inhibition, were 8 and > 6 for linuron and diuron, respectively; > 800 for atrazine; and > 20 for terbacil. Linuron-resistant P. oleracea was negatively cross-resistant to bentazon and pyridate (RR = 0.5 and 0.75, respectively). Time-course measurements of fresh weight, photosynthetic CO2 assimilation, and photochemical efficiency indicated that linuron and atrazine inhibited electron transport in susceptible (S) P. oleracea and C. album, ultimately resulting in death. Measurements of photochemical efficiency and CO2 assimilation of linuron-resistant P. oleracea treated with linuron indicated a transient injury from which plants recovered within 14 d. Recovery of linuron-resistant P. oleracea from atrazine injury was more rapid than from linuron injury for all measured variables. Atrazine-resistant C. album had no cross-resistance to linuron. Sequence analysis of the D1 protein revealed that linuron-resistant P. oleracea had a serine-to-threonine substitution at position 264.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1999 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bettini, P., McNally, S., Sevignac, M., Darmency, H., Gasquez, J., and Dron, M. 1987. Atrazine resistance in Chenopodium album . Plant Physiol. 84:14421446.CrossRefGoogle ScholarPubMed
Blyden, E. R. and Gray, J. C. 1986. The molecular basis of triazine herbicide resistance in Senecio vulgaris L. Biochem. Soc. Trans. 14:62.Google Scholar
Bowes, J., Crofts, A. R., and Arntzen, C. J. 1980. Redox reactions on the reducing side of photosystem II in chloroplasts with altered herbicide binding properties. Arch. Biochim. Biophys. 200:303308.Google Scholar
Conard, S. G. and Radosevich, S. R. 1979. Ecological fitness of Senecio vulgaris and Amaranthus retroflexus biotypes susceptible or resistant to atrazine. J. Appl. Ecol. 16:171177.Google Scholar
Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus 12:1315.Google Scholar
Egner, U., Hoyer, G.-A., and Saenger, W. 1993. Modeling and energy minimization studies on the herbicide binding protein (D1) in photosystem II of plants. Biochim. Biophys. Acta 1142:106114.Google Scholar
Erickson, J. M., Rahire, M., Bennoun, P., Delepelaire, P., Diner, B., and Rochaix, J. D. 1984. Herbicide resistance in Chlamydomonas reinhardtii results from a mutation in the chloroplast gene for the 32-kilodalton. protein of photosystem II. Proc. Natl. Acad. Sci. USA 81:36173621.Google Scholar
Erickson, J. M., Rahire, M., Rochaix, J. D., and Mets, L. 1985. Herbicide resistance and cross-resistance: changes at three distinct sites in the herbicide-binding protein. Science 228:204207.Google Scholar
Fuerst, E. P., Arntzen, C. J., Pfister, K., and Penner, D. 1986. Herbicide cross-resistance in triazine-resistant biotypes of four species. Weed Sci. 34:344353.CrossRefGoogle Scholar
Fuerst, E. P. and Norman, M. A. 1991. Interactions of herbicides with photosynthetic electron transport. Weed Sci. 39:458464.CrossRefGoogle Scholar
Gronwald, J. W. 1994. Resistance to photosystem II inhibiting herbicides. Pages 2760 in Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis Publishers.Google Scholar
Heap, I. M. 1998. International Survey of Herbicide-Resistant Weeds. 1998 Herbicide-Resistance Action Committee Annual Report. Corvallis, OR: WeedSmart. 165 p.Google Scholar
Hirschberg, J., Bleecker, A., Kyle, D. J., McIntosh, L., and Arntzen, C. J. 1984. The molecular basis of triazine-herbicide resistance in higher-plant chloroplasts. Z. Naturforsch. 39c:412420.Google Scholar
Hirschberg, J. and McIntosh, L. 1983. Molecular basis of herbicide resistance in Amaranthus hybridus . Science 222:13461348.Google Scholar
Hirschberg, J., Yehuda, A. B., Pecker, I., and Ohad, N. 1987. Mutations resistant to photosystem II herbicides. Pages 336352 in Wettstein, D. V. and Chua, N. H., eds. Plant Molecular Biology. NATA ASI Ser. A: Life Sciences Volume 140. New York: Plenum Press.Google Scholar
Hobbs, S.L.A. 1987. Comparison of photosynthesis in normal and triazine-resistant Brassica . Can J. Plant Sci. 67:457466.CrossRefGoogle Scholar
Holt, J. S. and LeBaron, H. M. 1990. Significance and distribution of herbicide resistance. Weed Technol. 4:141149.CrossRefGoogle Scholar
Holt, J. S., Radosevich, S. R., and Stemler, A. J. 1983. Differential efficiency of photosynthetic oxygen evolution in Hashing light in triazine-resistant and triazine-susceptible biotypes of Senecio vulgaris L. Biochim. Biophys. Acta 722:245255.Google Scholar
Holt, J. S., Stemler, A. J., and Radosevich, S. R. 1981. Differential light responses of photosynthesis by triazine-resistant and triazine-susceptible Senecio vulgaris biotypes. Plant Physiol. 67:744748.CrossRefGoogle ScholarPubMed
Hunt, R. 1980. Asymptotic functions. Pages 121146 in Plant Growth Curves. Baltimore, MD: University Park Press.Google Scholar
Jursinic, P. A. and Pearcy, R. W. 1988. Determination of the rate limiting step for photosynthesis in a nearly isonuclear rapeseed (Brassica napus L.) biotype resistant to atrazine. Plant Physiol. 88:11951200.Google Scholar
Lehoczki, E., Pölös, E., Laskay, G., and Farkas, T. 1985. Chemical composition and physical states of chloroplast lipids related to atrazine resistance in Conyza canadensis L. Plant Sci. 42:1924.Google Scholar
Maniatis, T., Fritsch, E. F., and Sambrook, J. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Masabni, J. and Zandstra, B. 1999. Discovery of a common purslane (Portulaca oleracea L.) biotype which is resistant to linuron. Weed Technol. In press.Google Scholar
Mazur, B. J. and Falco, S. C. 1989. The development of herbicide resistant crops. Annu. Rev. Plant Physiol. Mol. Biol. 40:441470.CrossRefGoogle Scholar
McCloskey, W. B. and Holt, J. S. 1990. Triazine resistance in Senecio vulgaris parental and nearly isonuclear backcrossed biotypes is correlated with reduced productivity. Plant Physiol. 92:954962.Google Scholar
Naber, D., Johanningmeier, U., and van Rensen, J.J.S. 1990. A rapid method for partial mRNA and DNA sequence analysis of the photosystem II psbA gene. Z. Naturforsch. 45c:418422.CrossRefGoogle Scholar
Ohad, N. and Hirschberg, J. 1992. Mutations in the D1 subunit of photosystem II distinguish between quinone and herbicide binding sites. Plant Cell 4:273282.Google Scholar
Páy, A., Smith, S. M., Nagy, F., and Márton, L. 1988. Sequence of the psbA gene from wild type and triazine-resistant Nicotiana plumbaginifolia . Nucleic Acids Res. 16:8176.Google Scholar
Pfister, K. and Arntzen, C. J. 1979. The mode of action of photosystem II-specific inhibitors in herbicide-resistant weed biotypes. Z. Naturforsch. 34c:9961009.Google Scholar
Pfister, K., Steinback, K. E., Gardner, G., and Arntzen, C. J. 1981. Photo-affinity labeling of an herbicide receptor protein in chloroplast membranes. Proc. Natl. Acad. Sci. USA 78:981985.CrossRefGoogle Scholar
Pillai, P. and St. John, J. B. 1981. Lipid composition of chloroplast membranes from weed biotypes differentially sensitive to triazine herbicides. Plant Physiol. 68:585587.Google Scholar
Radosevich, S. R. and Devilliers, O. T. 1976. Studies on the mechanism of s-triazine resistance in common groundsel. Weed Sci. 24:229232.Google Scholar
Rey, P., Eymery, F., and Peltier, G. 1990. Atrazine and diuron resistant plants from photoautotrophic protoplast-derived cultures of Nicotiana plumbaginifolia . Plant Cell Rep. 9:241244.CrossRefGoogle ScholarPubMed
Sanger, F., Nicklen, S., and Coulson, A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:54635467.Google Scholar
Sato, F., Sigematsu, Y., and Yamada, Y. 1988. Selection of an atrazine-resistant tobacco cell line having a mutant psbA gene. Mol. Gen. Genet. 214:358360.Google Scholar
Schönfeld, M., Yaacoby, T., Michael, O., and Rubin, B. 1987. Triazine resistance without reduced vigor in Phalaris paradoxa , Plant Physiol. 83: 329333.CrossRefGoogle ScholarPubMed
Schwenger-Erger, C., Thiemann, J., Barz, W., Johanningmeier, U., and Naber, D. 1993. Metribuzin resistance in photoautotrophic Chenopodium rubrum cell cultures: characterization of double and triple mutations in the psbA gene. FEBS Lett. 329:4346.Google Scholar
Sigematsu, Y., Sato, F., and Yamada, Y. 1989. A binding model for phenylurea herbicides based on analysis of a Thr264 mutation in the D-1 protein of tobacco. Pestic. Biochem. Physiol. 35:3341.CrossRefGoogle Scholar
Smeda, R. J., Hasegawa, P. M., Goldsbrough, P. B., Singh, N. K., and Weller, S. C. 1993. A serine-to-threonine substitution in the triazine herbicide-binding protein in potato cells results in atrazine resistance without impairing productivity. Plant Physiol. 103:911917.Google Scholar
Trebst, A. 1987. The three-dimensional structure of the herbicide binding niche on the reaction center polypeptides of photosystem II. Z. Naturforsch. 42c:742750.Google Scholar
Trebst, A. 1991. The molecular basis of resistance of photosystem II herbicides. Pages 145164 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Oxford, Great Britain: Butterworth-Heinemann.Google Scholar
Warwick, S. I. and Black, L. 1981. The relative competitiveness of atrazine susceptible and resistant populations of Chenopodium album and C. strictum . Can. J. Bot. 59:689693.Google Scholar
Wildner, G. F., Heisterkamp, U., Bodner, U., and Johanningmeier, U. 1989. An amino acid substitution in the QB-Protein causes herbicide resistance without impairing electron transport from QA to QB . Z. Naturforsch. 44c:431434.Google Scholar
Yerkes, C. N. 1995. Characterization of Atrazine Resistance in Photoautotrophic Cell Cultures and Weed Biotypes. Ph.D. dissertation. Purdue University, West Lafayette, IN. 157 p.Google Scholar