Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T13:08:32.824Z Has data issue: false hasContentIssue false

Selection of a Sunflower Line with Multiple Herbicide Tolerance That Is Reversed by the P450 Inhibitor Malathion

Published online by Cambridge University Press:  20 January 2017

Marcos Kaspar
Affiliation:
Balcarce Biotechnology Center, Advanta Semillas SAIC, Ruta 226 Km 60.5 (7620) Balcarce, Buenos Aires, Argentina
Martin Grondona
Affiliation:
Balcarce Biotechnology Center, Advanta Semillas SAIC, Ruta 226 Km 60.5 (7620) Balcarce, Buenos Aires, Argentina
Alberto Leon
Affiliation:
Balcarce Biotechnology Center, Advanta Semillas SAIC, Ruta 226 Km 60.5 (7620) Balcarce, Buenos Aires, Argentina
Andres Zambelli*
Affiliation:
Balcarce Biotechnology Center, Advanta Semillas SAIC, Ruta 226 Km 60.5 (7620) Balcarce, Buenos Aires, Argentina
*
Corresponding author's E-mail: [email protected]

Abstract

Ninety-seven inbred lines of sunflower were screened in the field by treatment with a combination of imazamox and malathion, an inhibitor of cytochrome P450 monooxygenases (P450s), to identify sunflower lines with natural tolerance to the herbicide reversed by malathion. One tolerant line, named TolP450-1, was selected and characterized in the field and in the greenhouse to evaluate its response to the herbicides imazamox, prosulfuron, and atrazine at different plant development stages (germination, emergence, and third difoliate) with and without malathion. For all herbicides and all development stages analyzed, TolP450-1 showed significantly higher tolerance compared with the susceptible line RHA266. In all cases, the tolerance was reversed by malathion. This sunflower line, tolerant to multiple herbicides, may be useful in helping to manage herbicide-resistant weeds by allowing additional herbicides to be used in this oilseed crop.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2010. Beyond® product label. BASF Corp., Research Triangle, NC: BASF Publication No. NVA 2009-04-191-0084. http://agproducts.basf.us/products/beyond-herbicide.html. Accessed: July 13, 2010.Google Scholar
Baerg, R. J., Barrett, M., and Polge, N. D. 1996. Insecticide and insecticide metabolite interactions with cytochrome P450 mediated activities in maize. Pestic. Biochem. Physiol. 55:1020.Google Scholar
Bravin, F., Zanin, G., and Preston, C. 2001. Resistance to diclofop-methyl in two Lolium spp. populations from Italy: studies on the mechanism of resistance. Weed Res. 41:461473.CrossRefGoogle Scholar
Chaudhry, O. 2008. Herbicide-Resistance and Weed-Resistance Management. http://www.weedscience.org/paper/Book_Chapter_I.pdf. Accessed: July 23, 2010.Google Scholar
Chauvel, B., Guillemin, J. P., Colbach, N., and Gasquez, J. 2001. Evaluation of cropping systems for management of herbicide-resistant populations of blackgrass (Alopecurus myosuroides Huds.). Crop Prot. 20:127137.CrossRefGoogle Scholar
Christopher, J. T., Preston, C., and Powles, S. B. 1994. Malathion antagonizes metabolism-based chlorsulfuron resistance in Lolium rigidum . Pestic. Biochem. Physiol. 49:172182.CrossRefGoogle Scholar
Cocker, K. M., Northcroft, D. S., Coleman, J. O. D., and Moss, S. R. 2001. Resistance to ACCase-inhibiting herbicides and isoproturon in UK populations of Lolium multiflorum: mechanisms of resistance and implications for control. Pest Manag. Sci. 57:587597.Google Scholar
Didierjean, L., Gondet, L., Perkins, R., Lau, S. C., Schaller, H., O'Keefe, D. P., and Werck-Reichhart, D. 2002. Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol. 130:179189.CrossRefGoogle ScholarPubMed
Fischer, A. J., Bayer, D. E., Carriere, M. D., Ateh, C. M., and Yim, K. O. 2000. Mechanisms of resistance to bispyribac-sodium in an Echinochloa phyllopogon accession. Pestic. Biochem. Physiol. 68:156165.CrossRefGoogle Scholar
Fonné-Pfister, R., Gaudin, J., Kreuz, K., Ramsteiner, K., and Ebert, E. 1990. Hydroxylation of primisulfuron by an inducible cytochrome P450-dependent monooxygenase system from maize. Pestic. Biochem. Physiol. 37:165173.CrossRefGoogle Scholar
Gressel, J. 1990. Synergizing herbicides. Rev. Weed Sci. 5:4982.Google Scholar
Hall, L. M., Holtum, J. A. M., and Powles, S. B. 1994. Mechanisms responsible for cross resistance and multiple resistance. Pages 243261 in Powles, S. B., and Holtum, J. A. M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL Lewis.Google Scholar
Hatzios, K. K. 1997. Regulation of enzymatic systems detoxifying xenobiotics in plants: A brief overview and directions for future research. Pages 15 in Hatzios, K. K., ed. Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. Alphen aan den Rijn, The Netherlands Kluwer Academic.CrossRefGoogle Scholar
Heap, I. 2010. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: February 12, 2010.Google Scholar
Kawahigashi, H., Hirose, S., Ohkawa, H., and Ohkawa, Y. 2007. Herbicide resistance of transgenic rice plants expressing human CYP1A1. Biotechnol. Adv. 25:7584.CrossRefGoogle ScholarPubMed
Kreuz, K. and Fonné-Pfister, R. 1992. Herbicide–insecticide interaction in maize: malathion inhibits cytochrome P450-dependent primisulfuron metabolism. Pestic. Biochem. Physiol. 43:232240.CrossRefGoogle Scholar
Letouzé, A. and Gasquez, J. 2001. Inheritance of fenoxaprop-P-ethyl resistance in blackgrass (Alopecurus myosuroides Huds.) population. Theor. Appl. Genet. 103:288296.Google Scholar
Letouzé, A. and Gasquez, J. 2003. Enhanced activity of several herbicide-degrading enzymes: a suggested mechanism responsible for multiple resistance in blackgrass (Alopecurus myosuroides Huds.). Agronomie. 23:601608.CrossRefGoogle Scholar
Moss, S. 1999. Detecting Herbicide Resistance: A Herbicide Resistance Action Committee Publication. http://hracglobal.com/Publications/DetectingHerbicideResistance/tabid/229/Default.aspx. Accessed: December 2, 2009.Google Scholar
Pan, G., Zhang, X., Liu, K., Zhang, J., Wu, X., Zhu, J., and Tu, J. 2006. Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides. Plant Mol. Biol. 61:933943.CrossRefGoogle ScholarPubMed
Prather, T. S., Ditomaso, J. M., and Holt, J. S. 2000. Herbicide resistance: definition and management strategies. Davis, CA Agriculture and Natural Resources, University of California, Publication 8012. Available at http://anrcatalog.ucdavis.edu/pdf/8012.pdf Accessed: July 2, 2010.CrossRefGoogle Scholar
Preston, C. 2004. Herbicide resistance in weeds endowed by enhanced detoxification: complications for management. Weed Sci. 52:448453.CrossRefGoogle Scholar
Preston, C., Stone, L. M., Rieger, M. A., and Baker, J. 2006. Multiple effects of a naturally occurring proline to threonine substitution within acetolactate synthase in two herbicide-resistant populations of Lactuca serriola . Pestic. Biochem. Physiol. 84:227235.Google Scholar
Putwain, P. D. 1990. The resistance of plants to herbicides. Pages 217242 in Hance, R., and Holly, K., eds. Weed Control Handbook: Principles. Oxford, UK Blackwell.Google Scholar
R Development Core Team. 2006. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org Accessed: January 10, 2010.Google Scholar
Sakamoto, Y., Ishiguro, M., and Kitagawa, G. 1986. Akaike Information Criterion Statistics. New York, NY Springer.Google Scholar
Schneiter, A. A. and Miller, J. F. 1981. Description of sunflower growth stages. Crop Sci. 21:901903.CrossRefGoogle Scholar
Schwarz, G. 1978. Estimating the dimension of a model. Ann. Stat. 6:461464.CrossRefGoogle Scholar
Shaner, D. L. 1999. Resistance to acetolactate synthase (ALS)-inhibiting in the United States: history, occurrence, detection and management. J. Weed Sci. Technol. 44:405411.CrossRefGoogle Scholar
Siminszky, B., Corbin, F. T., Ward, E. R., Fleischmann, T. J., and Dewey, R. E. 1999. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc. Natl. Acad. Sci. U. S. A. 96:17501755.CrossRefGoogle Scholar
Siminszky, B. 2006. Plant cytochrome P450-mediated herbicide metabolism. Phytochem. Rev. 5:445458.Google Scholar
Tan, S., Evans, R. R., Dahmer, M. L., Singh, B. K., and Shaner, D. L. 2005. Imidazolinone-tolerant crops: history, current status and future. Pest Manag. Sci. 61:246257.CrossRefGoogle ScholarPubMed
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.CrossRefGoogle Scholar
Werck-Reichhart, D., Hehn, A., and Didierjean, L. 2000. Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci. 5:116123.Google Scholar
Yasuor, H., Osuna, M. D., Ortiz, A., Saldaín, N. E., Eckert, J. W., and Fischer, A. J. 2009. Mechanism of resistance to penoxsulam in late watergrass [Echinochloa phyllopogon (Stapf) Koss.]. J. Agric. Food Chem. 57:36533660.CrossRefGoogle ScholarPubMed
Yu, Q., Abdallah, I., Han, H., Owen, M., and Powles, S. 2009. Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum . Planta. 230:713723.Google Scholar
Yu, Q., Shane Friesen, L. J., Zhang, X. Q., and Powles, S. B. 2004. Tolerance to acetolactate synthase and acetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co-existing resistance mechanisms. Pestic. Biochem. Physiol. 78:2130.CrossRefGoogle Scholar
Yuan, J. S., Tranel, P. J., and Stewart, C. N. Jr. 2007. Non-target-site herbicide resistance: a family business. Trends Plant Sci. 12:613.Google Scholar
Yun, M. S., Yogo, Y., Miura, R., Yamasue, Y., and Fischer, A. J. 2005. Cytochrome P-450 monooxygenase activity in herbicide-resistant and -susceptible late watergrass (Echinochloa phyllopogon). Pestic. Biochem. Physiol. 83:107114.Google Scholar