Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T00:14:24.674Z Has data issue: false hasContentIssue false

Seed germination and seedling emergence of threehorn bedstraw (Galium tricornutum)

Published online by Cambridge University Press:  20 January 2017

Gurjeet Gill
Affiliation:
Discipline of Agricultural and Animal Science, The University of Adelaide, Roseworthy Campus, South Australia, Australia 5371
Christopher Preston
Affiliation:
Discipline of Plant and Food Science, The University of Adelaide, Waite Campus, South Australia, Australia 5064

Abstract

Threehorn bedstraw is an important dicotyledonous weed of winter crops in southern Australia, which can be difficult to control in some field crops. Knowledge of the germination ecology of this weed would facilitate development of effective weed control programs. Seed germination in the laboratory was greater for seeds that after-ripened while buried in the soil relative to those that after-ripened on the soil surface. The timing of greatest seed germination in the laboratory was found to coincide with the period of low temperature in the field. Seed germination of threehorn bedstraw was moderately sensitive to salt stress but moderately tolerant to osmotic stress. Seeds of threehorn bedstraw germinated over a broad range of pH from 4 to 10. No seedlings emerged from seeds placed on the soil surface. Maximum seedling emergence occurred at depths of 1 to 2 cm (89 to 91%) and declined at greater depths.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amor, R. L. and Kloot, P. M. 1987. Changes in weed flora in south-eastern Australia due to cropping and control practices. Plant Prot. Q. 2:37.Google Scholar
Baskin, J. M. and Baskin, C. C. 1985. The annual dormancy cycle in buried weed seeds: a continuum. Bioscience. 25:492498.Google Scholar
Baskin, J. M. and Baskin, C. C. 1987. Temperature requirements for after-ripening in buried seeds of four summer annual weeds. Weed Res. 27:385389.Google Scholar
Benvenuti, S., Macchia, M., and Miele, S. 2001. Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Sci. 49:528535.Google Scholar
Black, I. D., Mayfield, A., and Matic, R. 1994. Chemical control of bedstraw (Galium tricornutum Dandy) and bifora (Bifora testiculata L.) in wheat, barley and field peas. Plant Prot. Q. 9:2427.Google Scholar
Boyd, N. S. and Van Acker, R. C. 2003. The effects of depth and fluctuating soil moisture on the emergence of eight annual and six perennial plant species. Weed Sci. 51:725730.Google Scholar
Chachalis, D. and Reddy, K. N. 2000. Factors affecting Campsis radicans seed germination and seedling emergence. Weed Sci. 48:212216.Google Scholar
Chauhan, B. S., Gill, G., and Preston, C. 2006. Factors affecting seed germination of threehorn bedstraw (Galium tricornutum) in Australia. Weed Sci. 54:471477.Google Scholar
Department of Agriculture, Western Australia. 2005. Bedstraw confirmed in cereal crops. www.agric.wa.gov.au.Google Scholar
DiTommaso, A. 2004. Germination behavior of common ragweed (Ambrosia artemisiifolia) populations across a range of salinities. Weed Sci. 52:10021009.Google Scholar
Froud-Williams, R. J. 1985. The biology of cleavers (Galium aparine). Asp. Appl. Biol. 9:189195.Google Scholar
Genstat 5 Committee. 1993. Genstat 5, Release 3 Reference Manual. Oxford, United Kingdom: Clarendon.Google Scholar
Gleichsner, J. A. and Appleby, A. P. 1989. Effect of depth and duration of seed burial on rigput brome (Bromus rigidus). Weed Sci. 37:6872.Google Scholar
Greenway, H. and Munns, R. 1980. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31:149190.Google Scholar
Hall, L. M., Stromme, K. M., Horsman, G. P., and Devine, M. D. 1998. Resistance to acetolactase synthase inhibitors and quinclorac in a biotype of false cleavers (Galium spurium). Weed Sci. 46:390396.Google Scholar
Koger, C. H., Reddy, K. N., and Poston, D. H. 2004. Factors affecting seed germination, seedling emergence, and survival of texasweed (Caperonia palustris). Weed Sci. 52:989995.Google Scholar
Malik, N. and Vanden Born, W. H. 1987a. False cleavers (Galium spurium L.) competition and control in rapeseed. Can. J. Plant Sci. 67:839844.Google Scholar
Malik, N. and Vanden Born, W. H. 1987b. Germination response of Galium spurium L. to light. Weed Res. 27:251258.Google Scholar
Malik, N. and Vanden Born, W. H. 1988. The biology of Canadian weeds. 86. Galium aparine L. and Galium spurium L. Can. J. Plant Sci. 68:481499.Google Scholar
Mennan, H. 2003. The effects of depth and duration of burial on seasonal germination, dormancy and viability of Galium aparine and Bifora radians seeds. J. Agron. Crop Sci. 189:304309.Google Scholar
Mennan, H. and Ngouajio, M. 2006. Seasonal cycles in germination and seedling emergence of summer and winter populations of catchweed bedstraw (Galium aparine) and wild mustard (Brassica kaber). Weed Sci. 54:114120.Google Scholar
Michel, B. E. 1983. Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol. 72:6670.Google Scholar
Moerkerk, M. R. 1999. Chemical control of bedstraw (Galium tricornutum Dandy) in wheat, barley, field peas, chickpeas and faba beans in southern Australia. Plant Prot. Q. 14:2429.Google Scholar
Omami, E. N., Haigh, A. M., Medd, R. W., and Nicol, H. I. 1999. Changes in germinability, dormancy and viability of Amaranthus retroflexus as affected by depth and duration of burial. Weed Res. 39:345354.Google Scholar
Reid, D. J. and Van Acker, R. C. 2005. Seed burial by tillage promotes field recruitment of false cleavers (Galium spurium) and catchweed bedstraw (Galium aparine). Weed Sci. 53:578585.Google Scholar
Rengasamy, P. 2002. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust. J. Exp. Agric. 42:351361.Google Scholar
Taylor, K. 1999. Galium aparine L. J. Ecol. 87:713730.Google Scholar
Tonkin, J. H. B. and Phillipson, A. 1973. The presence of weed seeds in cereal seed drills in England and Wales during spring 1970. J. Natl. Inst. Agric. Bot. 13:18.Google Scholar
Zorner, P. S., Zimdahl, R. L., and Schweizer, E. A. 1984. Effect of depth and duration of seed burial on kochia (Kochia scoparia). Weed Sci. 32:602607.Google Scholar