Published online by Cambridge University Press: 12 June 2017
Field observations indicate that wheat (Triticum aestivum L.) is considerably more tolerant to soil residues of chlorsulfuron {2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] carbonyl] benzenesulfonamide} than barley (Hordeum vulgare L.). The basis for relative differences in tolerance was investigated by measuring herbicide dose response, uptake, movement, and metabolism using ‘Clark’ barley and ‘Marberg’ wheat. Barley root fresh and dry weights were significantly reduced when roots were exposed to nutrient solution containing 35 mM chlorsulfuron for 1 day. Wheat roots similarly exposed for 3 days to 1.1 mM chlorsulfuron displayed no growth reduction. The small differences in uptake and movement of chlorsulfuron detected in wheat and barley are inadequate to explain the large response difference between the two species. Both species rapidly metabolize chlorsulfuron in 1 day and there is no significant difference in the level of parent compound remaining in barley compared to wheat. A factor other than uptake, movement, or metabolism must account for barley roots greater sensitivity to root-applied chlorsulfuron.