Article contents
Resistance to bixlozone and clomazone in cross-resistant rigid ryegrass (Lolium rigidum) populations from southern Australia
Published online by Cambridge University Press: 28 January 2021
Abstract
Three resistant (R) rigid ryegrass (Lolium rigidum Gaudin) populations from southern Australia (EP162, 375-14, and 198-15) with cross-resistance to thiocarbamate, chloroacetamide, and sulfonylisoxazoline herbicides displayed reduced sensitivity to the isoxazolidinone herbicides bixlozone and clomazone. Each of these R populations was exposed to two cycles of recurrent selection (RS) in which plants were treated with the field rate of bixlozone, survivors were bulk crossed, and seed was collected. After the first cycle of recurrent selection (RS1), the LD50 to bixlozone in population 198-15 increased to 17.5-fold compared with the S population and increased further to 26.9-fold after a second cycle of recurrent selection (RS2). The recurrent selection process also increased the level of resistance to bixlozone in populations EP162 and 375-14 (7.8- to 18.4-fold) compared with the S population. Phorate antagonized bixlozone and clomazone in SLR4 (34.6- and 28.1-fold increase in LD50) and both herbicides in populations EP162 (36.5- to 46.6-fold), 375-14 (71.4- to 73.9-fold), and 198-15 (86.4- to 91.5-fold) compared with the absence of phorate. The increase in LD50 of all L. rigidum RS populations when treated with phorate suggests a lack of herbicide activation is not the likely resistance mechanism to these herbicides. This research highlights the elevated risk of thiocarbamate-resistant L. rigidum populations to rapidly evolve resistance to the isoxazolidinone herbicides bixlozone and clomazone.
- Type
- Research Article
- Information
- Copyright
- © Weed Science Society of America, 2021
Footnotes
Associate Editor: Mithila Jugulam, Kansas State University
References
- 6
- Cited by