Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T09:31:10.017Z Has data issue: false hasContentIssue false

Resistance to an imidazolinone herbicide is conferred by a gene on chromosome 6DL in the wheat line cv. 9804

Published online by Cambridge University Press:  20 January 2017

Leanne Matthiesen
Affiliation:
Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108
Justin Hegstad
Affiliation:
Department of Plant Sciences, North Dakota State University, Fargo, ND 58105

Abstract

An induced mutation of the common wheat (2n = 6x = 42, AABBDD genomes) cultivar ‘Fidel’ has been shown to provide resistance to the imidazolinone class of herbicides. This class of herbicide gives broad-spectrum weed control including the weedy relative of wheat, jointed goatgrass (2n = 4x = 28, CCDD genomes). Because wheat and jointed goatgrass share a common genome, genes present on the D genome may transfer between the two species as a result of natural hybridization and selective pressures. Our objectives were to determine which genome of common wheat contained the herbicide resistance gene in the mutated Fidel and to genetically map its position. We investigated the chromosomal location of this gene using both durum (2n = 4x = 28, AABB genomes) and common wheat (6x) backgrounds. From crosses of durum wheat genotypes as the recurrent parent with mutated Fidel (cv. 9804, resistant), only BC1 plants containing chromosome 6D (inherited from cv. 9804) were resistant to applications of labeled rates of imazamox, an imidazolinone herbicide. No other D-genome chromosome was absolutely associated with herbicide resistance. To confirm this chromosomal location and genetically map the position of this gene, two populations of F3 families from the cross of cv. 9804 to the common wheat cultivars ‘Cashup’ and ‘Madsen’ were screened for reaction to imazamox, followed by genetic mapping with microsatellite markers. Two linked microsatellite markers were associated with the resistance trait, and one of them, Xgdm127, was located to chromosome 6D using aneuploid stocks, confirming the location of this gene on 6D. These results indicate that this resistance gene is in the genome that common wheat shares with jointed goatgrass. Therefore, imidazolinone-resistant wheat will need to be carefully managed to minimize the occurrence and spread of resistant jointed goatgrass, whether such plants arise because of hybridization with resistant common wheat or by independent mutation, a frequent occurrence with this herbicide class.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allan, R. E., Peterson, C. J., Rubenthaler, G. L., Line, R. F., and Roberts, D. E. 1989. Registration of Madsen wheat. Crop Sci 29:1575.CrossRefGoogle Scholar
Anderson, J. A., Ogihara, Y., Sorrells, M. E., and Tanksley, S. D. 1992. Development of a chromosomal arm map for wheat based on RFLP markers. Theor. Appl. Genet, 83:10351043.CrossRefGoogle ScholarPubMed
Anderson, P. A. and Gorgeson, M. 1989. Herbicide-tolerant mutants of corn. Genome 31:994999.CrossRefGoogle Scholar
Arriola, P. E. and Ellstrand, N. C. 1996. Crop-to-weed gene flow in the genus Sorghum (Poaceae)—spontaneous interspecific hybridization between johnsongrass, Sorghum halpense, and crop sorghum, S. bicolor . Am. J. Bot 83:11531159.CrossRefGoogle Scholar
Ball, D. A., Young, F. L., and Ogg, A. G. Jr. 1999. Selective control of jointed goatgrass (Aegilops cylindrica) with imazamox in herbicide resistant wheat. Weed Technol 13:7782.CrossRefGoogle Scholar
Bassam, B. J., Caetano-Anollés, G., and Gresshoff, P. M. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem 196:8083.CrossRefGoogle ScholarPubMed
Desplanque, B., Hautekeete, N., and Van Dijk, H. 2002. Transgenic weed beets: possible, probably, avoidable? J. Appl. Ecol 39:561571.CrossRefGoogle Scholar
Donald, W. W. and Ogg, A. G. Jr. 1991. Biology and control of jointed goatgrass (Aegilops cylindrica), a review. Weed Technol 5:317.CrossRefGoogle Scholar
Endo, T. R. and Gill, B. S. 1996. The deletion stocks of common wheat. J. Hered 87:295307.CrossRefGoogle Scholar
Hansen, L. B., Siegismund, H. R., and Jorgensen, R. B. 2001. Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population. Genet. Resour. Crop Evol 48:621627.CrossRefGoogle Scholar
Hanson, D. E., Ball, D., and Mallory-Smith, C. A. 2002. Herbicide resistance in jointed goatgrass (Aegilops cylindrica): simulated responses to agronomic practices. Weed Technol 16:156163.CrossRefGoogle Scholar
Heap, J. and Knight, R. 1982. A population of ryegrass tolerant to the herbicide diclofop-methyl. J. Aust. Inst. Agric. Sci 48:156157.Google Scholar
Heun, M., Kennedy, A. E., Anderson, J. A., Lapitan, N. L. V., Sorrells, M. E., and Tanksley, S. D. 1991. Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34:437447.CrossRefGoogle Scholar
Krugman, T., Levy, O., Snape, J. W., Rubin, B., Korol, A., and Nevo, E. 1997. Comparative RFLP mapping of the chlorotoluron resistance gene (Su1) in cultivated wheat (Triticum aestivum) and wild wheat (Triticum dicoccoides). Theor. Appl. Genet 94:4651.CrossRefGoogle ScholarPubMed
Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E., and Newberg, L. 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174181.CrossRefGoogle ScholarPubMed
Litt, M., Hauge, X., and Sharma, V. 1993. Shadow bands seen when typing polymorphic dinucleotide repeats: some causes and cures. Biotechniques 15:280283.Google ScholarPubMed
Lyon, D. J. and Baltensperger, D. D. 1995. Cropping systems control winter annual grass weeds in winter wheat. J. Prod. Agric 8:535539.CrossRefGoogle Scholar
Marino, C. L., Nelson, J. C., Lu, Y. H., Sorrells, M. E., Leroy, P., Tuleen, N. A., Lopes, C. R., and Hart, G. E. 1996. Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39:359366.CrossRefGoogle Scholar
McIntosh, R. A., Hart, G. E., Devos, K. M., Gale, M. D., and Rogers, W. J. 1998. Catalogue of gene symbols for wheat. Pages 1235 in Slinkard, A. E. ed. Proceedings of the 9th International Wheat Genetics Symposium, Saskatoon. Volume 3. Saskatoon, Canada: University Extension Press.Google Scholar
Mesbah, A. O. and Miller, S. D. 1999. Fertilizer placement affects jointed goatgrass (Aegilops cylindrica) competition in winter wheat (Triticum aestivum). Weed Technol 13:374377.CrossRefGoogle Scholar
Murray, B. G., Morrison, I. N., and Friesen, L. F. 2002. Pollen-mediated gene flow in wild oat. Weed Sci 50:321325.CrossRefGoogle Scholar
Newhouse, K. E., Smith, W. A., Starrett, M. A., Schaefer, T. J., and Singh, B. K. 1992. Tolerance to imidazolinone herbicides in wheat. Plant Physiol 100:882886.CrossRefGoogle ScholarPubMed
Ogg, A. G. Jr. and Seefeldt, S. S. 1999. Characterizing traits that enhance the competitiveness of winter wheat (Triticum aestivum) against jointed goatgrass (Aegilops cylindrica). Weed Sci 47:7480.CrossRefGoogle Scholar
Pagette, S. R., Re, D. B., Barry, G. F., Eichholtz, D. E., Delannay, X., Fuchs, R. L., Kishore, G. M., and Fraley, R. T. 1996. New weed control opportunities: Development of soybeans with a Roundup Ready™ gene. Pages 5384 in Duke, S. O. ed. Herbicide-Resistant Crops: Agricultural, Economic, Environmental, Regulatory and Technical Aspects. Boca Raton, FL: CRC.Google Scholar
Pestsova, E., Ganal, M. W., and Röder, M. S. 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689697.CrossRefGoogle Scholar
Riede, C. R. and Anderson, J. A. 1996. Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905909.CrossRefGoogle Scholar
Rieseberg, L. H., Kim, M. J., and Seiler, G. J. 1999. Introgression between the cultivated sunflower and a sympatric wild relative, Helianthus petiolaris (Asteraceae). Int. J. Plant Sci 160:102108.CrossRefGoogle Scholar
Röder, M. S., Korzun, V., Wendehake, W., Plaschke, J., Tixier, M., Leroy, P., and Ganal, M. W. 1998. A microsatellite map of wheat. Genetics 149:20072023.CrossRefGoogle ScholarPubMed
Sears, E. R. 1966. Nullisomic-tetrasomic combinations in hexaploid wheat. Pages 2945 in Riley, R. and Lewis, K. R. eds. Chromosome Manipulations and Plant Genetics. Edinburgh: Oliver and Boyd.CrossRefGoogle Scholar
Sears, E. R. and Sears, L. M. S. 1979. The telocentric chromosomes of common wheat. Pages 389407 in Ramunujam, S. ed. Proceedings of the 5th International Wheat Genetics Symposium. New Dehli: Indian Society of Genetics and Plant Breeding.Google Scholar
Sebastian, S. A., Fader, G. M., Ulrich, J. F., Forney, D. R., and Chaleff, R. S. 1989. Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Sci 29:14031408.CrossRefGoogle Scholar
Seefeldt, S. S., Zemetra, R., Young, F. L., and Jones, S. S. 1998. Production of herbicide-resistant jointed goatgrass (Aegilops cylindrica) × wheat (Triticum aestivum) hybrids in the field by natural hybridization. Weed Sci 46:632634.CrossRefGoogle Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones, potent inhibitors of acetohydroxyacid synthase. Plant Physiol 76:545546.CrossRefGoogle ScholarPubMed
Song, Q. J., Shi, J. R., Singh, S., Fickus, E. W., Fernalld, R., Gill, B. S., Cregan, P. B., and Ward, R. W. 2001. Development and mapping of microsatellite (SSR) markers in wheat. Pages 3134 in Canty, S. M., Lewis, J., Siler, L., and Ward, R. W. eds. 2001 National Fusarium Head Blight Forum Proceedings. Okemos, MI: Kinko's.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci 50:700712.CrossRefGoogle Scholar
Tranel, P. J., Wright, T. R., and Heap, I. M. 2003. ALS mutations from herbicide-resistant weeds. www.weedscience.com.Google Scholar
Wang, Z., Zemetra, R. S., Hansen, J., and Mallory-Smith, C. A. 2001. The fertility of wheat–jointed goatgrass hybrid and its backcross progenies. Weed Sci 49:340345.CrossRefGoogle Scholar
Young, F. L., Seefeldt, S. S., and Barnes, G. F. 1999. Planting geometry of winter wheat (Triticum aestivum) can reduce jointed goatgrass (Aegilops cylindrica) spikelet production. Weed Technol 13:183190.CrossRefGoogle Scholar
Zadoks, J. C., Chang, T. T., and Konzak, C. F. 1974. A decimal code for the growth stages of cereals. Weed Res 14:415421.CrossRefGoogle Scholar
Zemetra, R. S., Hansen, J., and Mallory-Smith, C. A. 1998. Potential for gene transfer between wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica). Weed Sci 46:313317.CrossRefGoogle Scholar