Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-21T23:30:33.410Z Has data issue: false hasContentIssue false

Resistance of weeds to ALS-inhibiting herbicides: what have we learned?

Published online by Cambridge University Press:  20 January 2017

Terry R. Wright
Affiliation:
Dow AgroSciences, LLC., 753 Highway 438, Greenville, MS 38701

Abstract

Herbicides that target the enzyme acetolactate synthase (ALS) are among the most widely used in the world. Unfortunately, these herbicides are also notorious for their ability to select resistant (R) weed populations. Now, there are more weed species that are resistant to ALS-inhibiting herbicides than to any other herbicide group. In most cases, resistance to ALS-inhibiting herbicides is caused by an altered ALS enzyme. The frequent occurrence of weed populations resistant to ALS inhibitors can be attributed to the widespread usage of these herbicides, how they have been used, the strong selection pressure they exert, and the resistance mechanism. In several cropping systems, ALS-inhibiting herbicides were used repeatedly as the primary mechanism of weed control. These herbicides exert strong selection pressure because of their high activity on sensitive biotypes at the rates used and because of their soil residual activity. Several point mutations within the gene encoding ALS can result in a herbicide-resistant ALS. From investigations of numerous R weed biotypes, five conserved amino acids have been identified in ALS that, on substitution, can confer resistance to ALS inhibitors. Substitutions of at least 12 additional ALS amino acids can also confer herbicide resistance in plants and other organisms but, to date, have not been found in R weed populations. Mutations in ALS conferring herbicide resistance are at least partially dominant, and because the gene is nuclear inherited, it is transmitted by both seed and pollen. Furthermore, in many cases there is apparently a negligible fitness cost of the resistance gene in the absence of herbicide selection. Although resistance to ALS-inhibiting herbicides has been a bane to weed management, it has spurred many advances within and beyond the weed science discipline. As examples, resistance to ALS-inhibiting herbicides has been exploited in the development of herbicide-resistant crops, studies of weed population dynamics, and in developing protocols for targeted gene modification. Resistance to ALS-inhibiting herbicides has greatly affected weed science by influencing how we view the sustainability of our weed management practices, what we consider when developing and marketing new herbicides, and how we train new weed scientists.

Type
Review
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akagi, T. 1996. A new binding model for structurally diverse ALS inhibitors. Pestic. Sci. 47:309318.3.0.CO;2-4>CrossRefGoogle Scholar
Alcocer-Ruthling, M., Thill, D. C., and Shafii, B. 1992. Differential competitiveness of sulfonylurea resistant and susceptible prickly lettuce (Lactuca serriola). Weed Technol. 6:303309.CrossRefGoogle Scholar
Anderson, P. C. and Georgeson, M. 1989. Herbicide-tolerant mutants of corn. Genome 34:994999.CrossRefGoogle Scholar
Aragão, F.J.L., Sarokin, L., Vianna, G. R., and Rech, E. L. 2000. Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [ Glycine max (L.) Merril] plants at a high frequency. Theor. Appl. Genet. 101:16.CrossRefGoogle Scholar
Babczinski, P. and Zelinski, T. 1991. Mode of action of herbicidal ALS-inhibitors on acetolactate synthase from green plant cell cultures, yeast, and Escherichia coli . Pestic. Sci. 31:305323.CrossRefGoogle Scholar
Barrentine, W. L. and Soigner, S. S. 1995. Characterization of a common cocklebur (Xanthium strumarium L.) biotype resistant to the imidazolinone herbicides. Weed Sci. Soc. Am. Abstr. 35:45.Google Scholar
Bedbrook, J. R., Chaleff, R. S., Falco, S. C., Mazur, B. J., Somerville, C. R., and Yadev, N. S., inventors. 1995. Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase. U.S. patent 5,378,824.Google Scholar
Beetham, P. R., Kipp, P. B., Sawycky, X. L., Arntzen, C. J., and May, G. D. 1999. A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc. Natl. Acad. Sci. USA 96:87748778.CrossRefGoogle ScholarPubMed
Bellinder, R. R., Gummesson, G., and Karlsson, C. 1994. Percentage driven government mandates for pesticide reduction: the Swedish model. Weed Technol. 8:350359.CrossRefGoogle Scholar
Bergelson, J., Purrington, C. B., Palm, C. J., and López-Gutiérrez, J. 1996. Costs of resistance: a test using transgenic Arabidopsis thaliana . Proc. R. Soc. Lond. Ser. B Biol. Sci. 263:16591663.Google ScholarPubMed
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270:17 38117 385.CrossRefGoogle ScholarPubMed
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1996. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 271:13925.CrossRefGoogle ScholarPubMed
Blackshaw, R. E., Kanashiro, D., Moloney, M. M., and Crosby, W. L. 1994. Growth, yield and quality of canola expressing resistance to acetolactate synthase inhibiting herbicides. Can. J. Plant Sci. 74:745751.Google Scholar
Boutsalis, P., Karotam, J., and Powles, S. B. 1999. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii . Pestic. Sci. 55:507516.3.0.CO;2-G>CrossRefGoogle Scholar
Bradshaw, L. D., Padgette, S. R., Kimball, S. L., and Wells, B. H. 1997. Perspectives on glyphosate resistance. Weed Technol. 11:189198.CrossRefGoogle Scholar
Brandle, J. E. and Miki, B. L. 1993. Agronomic performance of sulfonylurea-resistant transgenic flue-cured tobacco grown under field conditions. Crop Sci. 33:847852.Google Scholar
Bright, S.W.J., Ming, T., Evans, I. J., and MacDonald, M. J., inventors. 1992. Herbicide resistant plants. World Patent WO92/08794.Google Scholar
Chang, Y. Y. and Cronan, J. E. 1988. Common ancestry of Escherichia coli pyruvate oxidase and the acetohydroxy acid synthases of the branched-chain amino acid biosynthetic pathway. J. Bacteriol. 170:39373945.CrossRefGoogle ScholarPubMed
Chipman, D., Barak, Z., and Schloss, J. V. 1998. Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim. Biophys. Acta 1385:401419.CrossRefGoogle ScholarPubMed
Christoffoleti, P. J., Westra, P., and Moore, F. III. 1997. Growth analysis of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 45:691695.Google Scholar
Christopher, J. T., Powles, S. B., Liljegren, D. R., and Holtum, J.A.M. 1991. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum). Plant Physiol. 95:10361043.Google Scholar
Clough, S. J., and Bent, A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana . Plant J. 16:735743.Google Scholar
Cotterman, J. C. and Saari, L. L. 1992. Rapid metabolic inactivation is the basis for cross-resistance to chlorsulfuron in diclofop-methyl-resistant rigid ryegrass (Lolium rigidum) biotype SR4/84. Pestic. Biochem. Physiol. 43:182192.CrossRefGoogle Scholar
Croughan, T. P. 1996. Herbicide resistant rice. U.S. patent 5,545,822.Google Scholar
Devine, M. D., Marles, M.A.S., and Hall, L. M. 1991. Inhibition of acetolactate synthase in susceptible and resistant biotypes of Stellaria media . Pestic. Sci. 31:273280.CrossRefGoogle Scholar
D’Halluin, K. M., Bossut, M., Bonne, E., Mazur, B., Leemans, J., and Botterman, J. 1992. Transformation of sugarbeet (Beta vulgaris L.) and evaluation of herbicide resistance in transgenic plants. Bio/Technology 10:309314.Google Scholar
Dill, G., Baerson, S., Casagrande, L., Feng, Y., Brinker, R., Reynolds, T., Taylor, N., Rodriguez, D., and Teng, Y. 2000. Characterization of glyphosate resistant Eleusine indica biotypes from Malaysia. Third International Weed Science Congress Abstracts. Corvallis, OR: International Weed Science Society. p. 150.Google Scholar
Duggleby, R. G. 1997. Identification of an acetolactate synthase small subunit gene in two eukaryotes. Gene 190:245249.CrossRefGoogle ScholarPubMed
Duggleby, R. G. and Pang, S. S. 2000. Acetohydroxyacid synthase. J. Biochem. Mol. Biol. 33:136.Google Scholar
Dyer, W. E., Chee, P. W., and Fay, P. K. 1993. Rapid germination of sulfonylurea-resistant Kochia scoparia L. accessions is associated with elevated seed levels of branched chain amino acids. Weed Sci. 41:1822.Google Scholar
Eberlein, C. V., Guttieri, M. J., Berger, P. H., Fellman, J. K., Mallory-Smith, C. A., Thill, D. C., Baerg, R. J., and Belknap, W. R. 1999. Physiological consequences of mutation for ALS-inhibitor resistance. Weed Sci. 47:383392.CrossRefGoogle Scholar
Eberlein, C. V., Guttieri, M. J., Mallory-Smith, C. A., Thill, D. C., and Baerg, R. J. 1997. Altered acetolactate synthase activity in ALS-inhibitor resistant prickly lettuce (Lactuca serriola). Weed Sci. 45:212217.Google Scholar
Eoyang, L. and Silverman, P. M. 1984. Purification and subunit composition of acetohydroxyacid synthase I from Escherichia coli K-12. J. Bacteriol. 157:184189.CrossRefGoogle ScholarPubMed
Foes, M. J., Liu, L., Vigue, G., Stoller, E. W., Wax, L. M., and Tranel, P. J. 1999. A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Sci. 47:2027.Google Scholar
Friedberg, D. and Seijffers, J. 1990. Molecular characterization of genes coding for wild-type and sulfonylurea-resistant acetolactate synthase in the cyanobacterium Synechococcus PCC7942. Z. Naturforsch. 45c:538543.CrossRefGoogle Scholar
Funke, R. P., Kovar, J. L., Logsdon, J. M. Jr., Corrette-Bennett, J. C., Straus, D. R., and Weeks, D. P. 1999. Nucleus-encoded, plastid-targeted acetolactate synthase genes in two closely related chlorophytes, Chlamydomonas reinhardtii and Volvox carteri: phylogenetic origins and recent insertion of introns. Mol. Gen. Genet. 262:1221.Google Scholar
Gardner, E. J. and Snustad, D. P. 1984. Principles of Genetics. 7th ed. New York: J. Wiley. p. 275.Google Scholar
Gerwick, B. C., Subramanian, M. V., and Loney-Gallant, V. I. 1990. Mechanism of action of the 1,2,4-triazolo[1,5-a]pyrimidines. Pestic. Sci. 29:357364.Google Scholar
Grabau, C. and Cronan, J. E. Jr. 1986. Nucleotide sequence and deduced amino acid sequence of Escherichia coli pyruvate oxidase, a lipid-activated flavoprotein. Nucleic Acids Res. 15:54495460.CrossRefGoogle Scholar
Grimminger, H. and Umbarger, H. E. 1979. Acetohydroxy acid synthase I of Escherichia coli: purification and properties. J. Bacteriol. 137:848853.Google Scholar
Gronwald, J. W. 1994. Resistance to photosystem II inhibiting herbicides. Pages 2760 In Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Ann Arbor, MI: Lewis.Google Scholar
Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., Thill, D. C., and Hoffman, D. L. 1992. DNA sequence variation in Domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci. 40:670676.Google Scholar
Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., and Thill, D. C. 1996. Molecular genetics of target-site resistance to acetolactate synthase inhibiting herbicides. Pages 1016 In Brown, T. M., ed. Molecular Genetics and Evolution of Pesticide Resistance. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Guttieri, M. J., Eberlein, C. V., and Souza, E. J. 1998. Inbreeding coefficients of field populations of Kochia scoparia using chlorsulfuron resistance as a phenotypic marker. Weed Sci. 46:521525.CrossRefGoogle Scholar
Guttieri, M. J., Eberlein, C. V., and Thill, D. C. 1995. Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci. 43:175178.CrossRefGoogle Scholar
Hager, A. G., Wax, L. M., Simmons, F. W., and Stoller, E. W. 1997. Waterhemp Management in Agronomic Crops. Urbana, IL: University of Illinois. 12 p.Google Scholar
Hall, L. M. and Devine, M. D. 1990. Cross resistance of a chlorsulfuron-resistant biotype of Stellaria media to a triazolopyrimidine herbicide. Plant Physiol. 93:962966.CrossRefGoogle ScholarPubMed
Hall, L. M., Holtum, J.A.M., and Powles, S. B. 1994. Mechanisms responsible for cross resistance and multiple resistance. Pages 243262 In Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Ann Arbor, MI: Lewis.Google Scholar
Harms, C. T., Armour, S. L., DiMaio, J. J., et al. 1992. Herbicide resistance due to amplification of a mutant acetohydroxyacid synthase gene. Mol. Gen. Genet. 233:427435.Google Scholar
Hart, S. E., Saunders, J. W., and Penner, D. 1993. Semidominant nature of monogenic sulfonylurea herbicide resistance in sugarbeet (Beta vulgaris). Weed Sci. 41:317324.Google Scholar
Haughn, G. W., Smith, J., Mazur, B., and Somerville, C. 1988. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211:266271.Google Scholar
Hawkes, T. R., Howard, J. L., and Pontin, S. E. 1989. Herbicides that inhibit the biosynthesis of branched chain amino acids. Pages 113136 In Dodge, A. D., ed. Herbicides and Plant Metabolism. Society for Experimental Biology Seminar Series, Volume 38. London: Cambridge University Press.Google Scholar
Heap, I. 2002. The International Survey of Herbicide Resistant Weeds. Web page: www.weedscience.com. Accessed: January 10, 2002.Google Scholar
Heap, I. and Knight, R. 1986. The occurrence of herbicide cross-resistance in a population of annual ryegrass, Lolium rigidum, resistant to diclofop-methyl. Aust. J. Agric. Res. 37:149156.Google Scholar
Hershey, H. P., Schwartz, L. J., Gale, J. P., and Abell, L. M. 1999. Cloning and functional expression of the small subunit of acetolactate synthase from Nicotiana plumbaginifolia . Plant Mol. Biol. 40:795806.Google Scholar
Hill, C. M. and Duggleby, R. G. 1998. Mutagenesis of Escherichia coli acetohydroxyacid synthase isoenzyme II and characterization of three herbicide-insensitive forms. Biochem. J. 335:653661.CrossRefGoogle ScholarPubMed
Holt, J. S. and Thill, D. C. 1994. Growth and productivity of resistant plants. Pages 299316 In Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Ann Arbor, MI: Lewis.Google Scholar
Holtum, J.A.M., Matthews, J. M., Häusler, R. E., Liljegren, D. R., and Powles, S. B. 1991. Cross resistance to herbicides in annual ryegrass (Lolium rigidum). III. On the mechanism of resistance to diclofop-methyl. Plant Physiol. 97:10261034.Google ScholarPubMed
Ibdah, M., Bar-Ilan, A., Livnah, O., Schloss, J. V., Barak, Z., and Chipman, D. M. 1996. Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry 35:16 28216 291.Google Scholar
Jasieniuk, M., Brûlé-Babel, A. L., and Morrison, I. N. 1994. Inheritance of trifluralin resistance in green foxtail (Setaria viridis). Weed Sci. 42:123127.Google Scholar
Jasieniuk, M., Brûleé-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.Google Scholar
Jiang, W. and Tranel, P. J. 2002. Variability in a herbicide target-site gene. Weed Sci. Soc. Am. Abstr. 42:20.Google Scholar
Kakefuda, G., Ott, K. H., Kwagh, J. G., and Stockton, G. W., inventors. 1996. Structure-based designed herbicide resistant products. World Patent WO96/33270.Google Scholar
Kemp, M. S., Moss, S. R., and Thomas, T. H. 1990. Herbicide resistance in Alopecurus myosuroides . Pages 376393 In Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals. From Fundamental Research to Practical Strategies. Washington, DC: American Chemical Society.Google Scholar
Kishore, G. M. and Shaw, D. M. 1988. Amino acid biosynthesis inhibitors as herbicides. Annu. Rev. Biochem. 57:627663.CrossRefGoogle ScholarPubMed
Kovar, J. L., Zhang, J., Funke, R. P., and Weeks, D. P. 2002. Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J. 29:109117.Google Scholar
Ladner, D. W. 1991. Structure-activity relationships among imidazolinone herbicides. Pages 3151 In Shaner, D. L. and O’Connor, S. L., eds. The Imidazolinone Herbicides. Ann Arbor, MI: Lewis.Google Scholar
Lee, K. Y., Townsend, J., Tapperman, J., Black, M., Chui, C. F., Mazur, B., Dunsmuir, P., and Bedbrook, J. 1988. The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J. 7:12411248.CrossRefGoogle ScholarPubMed
Li, Z., Hayashimoto, A., and Murai, N. 1992. A sulfonylurea herbicide resistance gene from Arabidopsis thaliana as a new selectable marker for production of fertile transgenic rice plants. Plant Physiol. 100:662668.Google Scholar
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.Google Scholar
Mazur, B. J. and Falco, S. C. 1989. The development of herbicide resistant crops. Annu. Rev. Plant Physiol. Mol. Biol. 40:441470.CrossRefGoogle Scholar
McHughen, A. 1989. Agrobacterium mediated transfer of chlorsulfuron resistance to commercial flax cultivars. Plant Cell Rep. 8:445449.CrossRefGoogle ScholarPubMed
McHughen, A. and Holm, F. 1991. Herbicide-resistant transgenic flax field test: agronomic performance in normal and sulfonylurea-containing soils. Euphytica 55:4956.CrossRefGoogle Scholar
McNaughton, K. E., Lee, E. A., and Tardif, F. J. 2001. Mutations in the ALS gene conferring resistance to group II herbicides in redroot pigweed (Amaranthus retroflexus) and green pigweed (A. powellii). Weed Sci. Soc. Am. Abstr. 41:97.Google Scholar
Mengistu, L. W., Mueller-Warrant, G. W., Liston, A. I., and Barker, R. E. 2000. psbA mutation (valine219 to isoleucine) in Poa annua resistant to metribuzin and diuron. Pest Manage. Sci. 56:209217.Google Scholar
Milliman, L. D., Riechers, D. E., Simmons, F. W., and Wax, L. M. 2000. Two biotypes of eastern black nightshade that are resistant to ALS-inhibiting herbicides. Proc. N. Cent. Weed Sci. Soc. 55:86.Google Scholar
Moss, S. R. and Cussans, G. W. 1991. The development of herbicide resistant populations of Alopecurus myosuroides (black-grass) in England. Pages 445456 In Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Oxford, U.K.: Butter-worth-Heneman.Google Scholar
Mourad, G., Haughn, G., and King, J. 1994. Intragenic recombination in the CSR1 locus of Arabidopsis . Mol. Gen. Genet. 243:178184.Google Scholar
Muller, Y. A. and Schulz, G. E. 1993. Structure of the thiamine- and flavin-dependent enzyme pyruvate oxidase. Science 259:965967.Google Scholar
Newhouse, K. E., Smith, W. A., Starrett, M. A., Schaefer, T. J., and Singh, B. K. 1992. Tolerance to imidazolinone herbicides in wheat. Plant Physiol. 100:882886.CrossRefGoogle ScholarPubMed
Oh, K. J., Park, E. J., Yoon, M. Y., Han, T. R., and Choi, J. D. 2001. Roles of histidine residues in tobacco acetolactate synthase. Biochem. Biophys. Res. Commun. 282:12371243.Google Scholar
Ott, K. H., Kwagh, J. G., Stockton, G. W., Sidirov, V., and Kakefuda, G. 1996. Rational molecular design and genetic engineering of herbicide resistant crops by structure modeling and site-directed mutagenesis of acetohydroxyacid synthase. J. Mol. Biol. 263:359368.Google Scholar
Pang, S. S., Duggleby, R. G., and Guddat, L. W. 2002. Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors. J. Mol. Biol. 317:249262.CrossRefGoogle ScholarPubMed
Patzoldt, W. L. and Tranel, P. J. 2001. ALS mutations conferring herbicide resistance in waterhemp. Proc. N. Cent. Weed Sci. Soc. 56:67.Google Scholar
Patzoldt, W. L. and Tranel, P. J. 2002. Molecular analysis of cloransulam resistance in a population of giant ragweed. Weed Sci. 50:299305.CrossRefGoogle Scholar
Patzoldt, W. L., Tranel, P. J., Alexander, A. L., and Schmitzer, P. R. 2001. A common ragweed population resistant to cloransulam-methyl. Weed Sci. 49:485490.CrossRefGoogle Scholar
Patzoldt, W. L., Tranel, P. J., and Hager, A. G. 2002. Variable herbicide responses among Illinois waterhemp (Amaranthus rudis and A. tuberculatus) populations. Crop Prot. In press.Google Scholar
Preston, C. and Powles, S. B. 2002. Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum . Heredity 88:813.Google Scholar
Primiani, M., Cotterman, M.J.C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4:169172.Google Scholar
Ray, T. B. 1984. Site of action of chlorsulfuron. Plant Physiol. 75:827831.CrossRefGoogle ScholarPubMed
Saari, L. L., Cotterman, J. C., Smith, W. F., and Primiani, M. M. 1992. Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass, and Russian thistle. Pestic. Biochem. Physiol. 42:110118.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. Pages 83139 In Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Ann Arbor, MI: Lewis.Google Scholar
Saari, L. L. and Mauvais, C. J. 1996. Sulfonylurea herbicide-resistant crops. Pages 127142 In Duke, S. O., ed. Herbicide-Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technical Aspects. New York: Lewis.Google Scholar
Sathasivan, K., Haughn, G. W., and Murai, N. 1990. Nucleotide sequence of a mutant acetolactate synthase gene from an imidazolinone-resistant Arabidopsis thaliana var. Columbia. Nucleic Acids Res. 18:2188.Google Scholar
Sathasivan, K., Haughn, G. W., and Murai, N. 1991. Molecular basis of imidazolinone herbicide resistance in Arabidopsis thaliana var. Columbia. Plant Physiol. 97:10441050.Google Scholar
Schloss, J. V. 1990. Acetolactate synthase, mechanism of action and its herbicide binding site. Pestic. Sci. 29:283290.Google Scholar
Schloss, J. V., Ciskanik, L. M., and Van Dyk, D. E. 1988. Origin of the herbicide binding site of acetolactate synthase. Nature 331:360362.CrossRefGoogle Scholar
Schmenk, R. E., Barrett, M., and Witt, W. E. 1997. An investigation of smooth pigweed (Amaranthus hybridus L.) resistance to acetolactate synthase inhibiting herbicides. Weed Sci. Soc. Am. Abstr. 37:296.Google Scholar
Schmitzer, P. R., Eilers, R. J., and Cséke, C. 1993. Lack of cross-resistance of imazaquin-resistant Xanthium strumarium acetolactate synthase to flumetsulam and chlorimuron. Plant Physiol. 103:281283.Google Scholar
Schultz, M. E., Schmitzer, P. R., Alexander, A. L., and Dorich, R. A. 2000. Identification and management of resistance to ALS-inhibiting herbicides in giant ragweed (Ambrosia trifida) and common ragweed (Ambrosia artemisiifolia). Weed Sci. Soc. Am. Abstr. 40:42.Google Scholar
Sebastian, S. A., Fader, G. M., Ulrich, J. F., Forney, D. R., and Chaleff, R. S. 1989. Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Sci. 29:14031408.Google Scholar
Shaner, D. L. 1991. Physiological effects of the imidazolinone herbicides. Pages 129138 In Shaner, D. L. and O’Connor, S. L., eds. The Imidazolinone Herbicides. Ann Arbor, MI: Lewis.Google Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones: potential inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.Google Scholar
Shaner, D. L., Bascomb, N. F., and Smith, W. 1996. Imidazolinone-resistant crops: selection, characterization, and management. Pages 143157 In Duke, S. O., ed. Herbicide-Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technical Aspects. New York: Lewis.Google Scholar
Sibony, M., Michel, A., Haas, H. U., Rubin, B., and Hurle, K. 2001. Sulfometuron-resistant Amaranthus retroflexus: cross-resistance and molecular basis for resistance to acetolactate synthase-inhibiting herbicides. Weed Res. 41:509522.Google Scholar
Stallings, G. P., Thill, D. C., Mallory-Smith, C. A., and Shafii, B. 1995. Pollen-mediated gene flow of sulfonylurea-resistant kochia (Kochia scoparia). Weed Sci. 43:95102.Google Scholar
Souza-Machado, V., Bandeen, J. D., Stephenson, G. R., and Lavigne, P. 1978. Uniparental inheritance of chloroplast atrazine tolerance in Brassica campestris . Can. J. Plant Sci. 58:977981.Google Scholar
Swanson, E. B., Herrgesell, M. J., Arnoldo, M., Sippell, D. W., and Wong, R.S.C. 1989. Microspore mutagenesis and selection: canola plants with field tolerance to the imidazolinones. Theor. Appl. Genet. 78:525530.CrossRefGoogle Scholar
Takahashi, S., Shigematsu, S., and Morita, A. 1991. KIH-2031, a new herbicide for cotton. Pages 5762 In Proceedings of the Brighton Crop Protection Conference. Farnham, U.K.: Brighton Crop Protection Council.Google Scholar
Thompson, C. R., Thill, D. C., and Shafii, B. 1994a. Germination characteristics of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 42:5056.Google Scholar
Thompson, C. R., Thill, D. C., and Shafii, B. 1994b. Growth and competitiveness of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 42:172179.Google Scholar
Tranel, P. J., Wassom, J. J., Jeschke, M. R., and Rayburn, A. L. 2002. Transmission of herbicide resistance from a monoecious to a dioecious weedy Amaranthus species. Theor. Appl. Genet. In press.Google Scholar
Umbarger, H. E. 1978. Amino acid biosynthesis and its regulation. Annu. Rev. Biochem. 47:533606.Google Scholar
Wetzel, D. K., Horak, M. J., Skinner, D. Z., and Kulakow, P. A. 1999. Transferal of herbicide resistance traits from Amaranthus palmeri to Amaranthus rudis . Weed Sci. 47:538543.Google Scholar
Woodworth, A., Bernasconi, P., Subramanian, M., and Rosen, B. 1996a. A second naturally occurring point mutation confers broad-based tolerance to acetolactate synthase inhibitors. Plant Physiol. 111:S105.Google Scholar
Woodworth, A. R., Rosen, B. A., and Bernasconi, P. 1996b. Broad range resistance to herbicides targeting acetolactate synthase (ALS) in a field isolate of Amaranthus sp. is conferred by a Trp to Leu mutation in the ALS gene. Plant Physiol. 111:1353.Google Scholar
Wright, T. R., Bascomb, N. F., Sturner, S. F., and Penner, D. 1998. Biochemical mechanism and molecular basis for ALS-inhibiting herbicide resistance in sugarbeet (Beta vulgaris) somatic cell selections. Weed Sci. 46:1323.Google Scholar
Wright, T. R. and Penner, D. 1998a. Corn (Zea mays) acetolactate synthase sensitivity to four classes of ALS-inhibiting herbicides. Weed Sci. 46:812.Google Scholar
Wright, T. R. and Penner, D. 1998b. Cell selection and inheritance of imidazolinone resistance in sugarbeet (Beta vulgaris). Theor. Appl. Genet. 96:612620.Google Scholar
Yadev, N., McDevitt, R. E., Benard, S., and Falco, S. C. 1986. Single amino acid substitutions in the enzyme acetolactate synthase confer resistance to the herbicide sulfometuron methyl. Proc. Natl. Acad. Sci. U.S.A 83:44184422.Google Scholar
Zeng, L. and Baird, W. V. 1997. Genetic basis of dinitroaniline herbicide resistance in a highly resistant biotype of goosegrass (Eleusine indica). J. Hered. 88:427432.CrossRefGoogle Scholar
Zhu, T., Mettenburg, K., Peterson, D. J., Tagliani, L., and Baszczynski, C. L. 2000. Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat. Biotech. 18:555558.Google Scholar