Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T20:01:08.540Z Has data issue: false hasContentIssue false

Propanil Resistance in Populations of Junglerice (Echinochloa colona) in Colombian Rice Fields

Published online by Cambridge University Press:  12 June 2017

Albert J. Fischer
Affiliation:
(BS Thesis), at the Centro Internacional de Agricultura Tropical (CIAT) A. A. 6713, Cali, Colombia
Eduardo Granados
Affiliation:
(BS Thesis), at the Centro Internacional de Agricultura Tropical (CIAT) A. A. 6713, Cali, Colombia
Diego Trujillo
Affiliation:
(BS Thesis), at the Centro Internacional de Agricultura Tropical (CIAT) A. A. 6713, Cali, Colombia

Abstract

Dose-response studies estimating GR40 values indicated different levels of propanil resistance in junglerice populations from fields previously treated with propanil, compared to a check population collected where this herbicide had never been used. The GR40 for susceptible populations ranged from 0.36 to 0.50 kg ai ha−1 and for resistant populations ranged from 1.10 to 3.10 kg ai ha−1. Considerable variability in growth and morphology existed among populations. Variability in cumulative leaf area, aboveground biomass, mean relative growth rate, mean net assimilation rate, and mean leaf area ratio could not be related to propanil resistance. Competitiveness was not related to propanil resistance either. of several vegetative and reproductive parameters measured at maturity, only grain weight per plant and number of grains per plant were correlated with GR40 (r = −0.73, P = 0.06). This trend towards lower reproductive fitness in propanil-resistant junglerice plants may reduce its ecological success when growing with propanil-susceptible plants in the absence of this herbicide.

Type
Weed Biology and Ecology
Copyright
Copyright © 1993 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Conard, G. S. and Radosevich, S. R. 1979. Ecological fitness of Senecio vulgaris and Amaranthus retroflexus biotypes susceptible or resistant to atrazine. J. Appl. Ecol. 16:171177.CrossRefGoogle Scholar
2. Giannopolitis, C. N. and Vassiliou, G. 1989. Propanil resistance in Echinochloa crus-galli (L.) Beauv. Trop. Pest Manage. 35:67.Google Scholar
3. Gonzalez, J., Arregocés, O., and Escobar, E. 1985. Principales malezas en el cultivo del arroz en América Latina. Pages 419444 in Centro Internacional de Agricultura Tropical. Arroz: Investigación y Production. Tascón, E. J. and Garcia, E., eds. PNUD/CIAT, Cali, Colombia.Google Scholar
4. Gonzalez, J. 1985. Manejo de las malezas en arrozales. Pages 445448 in Centro Internacional de Agricultura Tropical. Arroz: Investigación y Producción. Tascón, E. J. and García, E., eds. PNUD/CIAT, Cali, Colombia.Google Scholar
5. Gressel, J. 1978. Factors influencing the selection of herbicide-resistant biotypes of weeds. Outlook Agric. 9:283287.CrossRefGoogle Scholar
6. Gressel, J. and Segel, L. A. 1978. The paucity of plants evolving genetic resistance to herbicides. J. Theor. Biol. 75:349371.Google Scholar
7. Gressel, J. and Segel, L. A. 1982. Interrelating factors controlling the rate of appearance of resistance: The outlook for the future. Pages 325347 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley and Sons, New York.Google Scholar
8. Holt, J. S. and Radosevich, S. R. 1983. Differential growth of two common groundsel (Senecio vulgaris) biotypes. Weed Sci. 31:112120.Google Scholar
9. LeBaron, H. M. and McFarland, J. 1988. Herbicide resistance in weeds and crops. Pages 336352 in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals, from Fundamental Research to Practical Strategies. Am. Chem. Soc. Google Scholar
10. Murphy, T. R., Gossett, B. J., and Toler, J. E. 1986. Growth and development of dinitroaniline-susceptible and -resistant goosegrass (Eleusine indica) biotypes under noncompetitive conditions. Weed Sci. 34:704710.Google Scholar
11. Radosevich, S. R. and Holt, J. 1984. Weed Ecology, Implications for Vegetation Management. John Wiley and Sons, New York.Google Scholar
12. Spitters, C.J.T. 1983. An alternative approach to the analysis of mixed cropping experiments. 1. Estimation of competition effects. Neth. J. Agric. Sci. 31:111.Google Scholar
13. Valverde, B. E. 1989. Dinitroaniline-herbicide resistance in goosegrass (Eleusine indica): Ecophysiological aspects. Ph.D. Dissertation, Oregon State Univ., Corvallis, Oregon.Google Scholar