Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T19:29:28.141Z Has data issue: false hasContentIssue false

The Potential Global Distribution of Tall Buttercup (Ranunculus acris ssp. acris): Opposing Effects of Irrigation and Climate Change

Published online by Cambridge University Press:  20 January 2017

Graeme W. Bourdôt*
Affiliation:
AgResearch Ltd, Lincoln, Private Bag 4749, Christchurch 8140, New Zealand
Shona L. Lamoureaux
Affiliation:
AgResearch Ltd, Lincoln, Private Bag 4749, Christchurch 8140, New Zealand
Michael S. Watt
Affiliation:
Scion, PO Box 29237, Fendalton, Christchurch, New Zealand
Darren J. Kriticos
Affiliation:
Commonwealth Science and Industrial Research Organisation, Ecosystem Sciences and Climate Adaptation Flagship, GPO Box 1700, Canberra, ACT, 2601 Australia
*
Corresponding author's E-mail: [email protected]

Abstract

Tall buttercup, a native of central and northern Europe, has become naturalized in the United States and Canada, and in South Africa, Tasmania and New Zealand. In Canada and New Zealand it has become an economically significant weed in cattle-grazed pastures. In this study we develop a CLIMEX model for tall buttercup and use it to project the weed's potential distribution under current and future climates and in the presence and absence of irrigation. There was close concordance between the model's projection of suitable climate and recorded observations of the species. The projection was highly sensitive to irrigation; the area of potentially suitable land globally increasing by 30% (from 34 to 45 million km2) under current climate when a “top-up” irrigation regime (rainfall topped up 4 mm d−1 on irrigable land), was included in the model. Most of the area that becomes suitable under irrigation is located in central Asia and central North America. By contrast, climate change is projected to have the opposite effect; the potential global distribution diminishing by 18% (from 34 to 28 million km2). This range contraction was the net result of a northward expansion in the northern limit for the species in Canada and the Russian Federation, and a relatively larger increase in the land area becoming unsuitable mainly in central Asia and south eastern United States.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bourdôt, G. W. and Saville, D. J. 2010. Giant buttercup — a threat to sustainable dairy farming in New Zealand. Pages 355359 in Proceedings of the Australasian Dairy Science Symposium 2010 — Meeting the Challenges for Pasture-Based Dairying. Christchurch, New Zealand: Lincoln University, NZ Animal Production Society.Google Scholar
Bourdôt, G. W., Saville, D. J., and Crone, D. 2003. Dairy production revenue losses in New Zealand due to giant buttercup (Ranunculus acris). N. Z. J. Agric. Res. 46: 295303.Google Scholar
Coles, S. M. 1971. The Ranunculus acris L. complex in Europe. Watsonia 8: 237261.Google Scholar
Connor, H. E. 1977. The poisonous plants in New Zealand. 2nd ed. Wellington: DSIR. 247 p.Google Scholar
Cooper, E. J. 2004. Out of sight, out of mind: thermal acclimation of root respiration in artic Ranunculus . Arct. Antarct. Alp. Res. 36: 308313.Google Scholar
Editorial Committee, ed. 1997. Flora of North America. New York: Oxford University Press. 616 p.Google Scholar
ESRI. 1994. Map Projections: Georeferencing Spatial Data. Redlands, California: Environmental Systems Research Institute, Inc. 244 p.Google Scholar
Fraser, S. 2011. DairyNZ welcomes irrigation investment report. http://www.dairynz.co.nz/news/pageid/2145870848. Accessed January 10, 2012.Google Scholar
GBIF. 2009. Global Invasive Species Facility. http://data.gbif.org. Accessed November 26, 2009.Google Scholar
Harper, J. L. 1957. Biological flora of the British Isles: Ranunculus acris L., Ranunculus repens L. and Ranunculus bulbosus L. J. Ecol. 45: 289342.Google Scholar
Harper, J. L. and Sagar, G. R. 1953a. Buttercups, some aspects of the ecology of buttercups in permanent grassland. Pages 256263 in Proceedings of the 1st British Weed Control Conference. Brighton: British Crop Protection Council.Google Scholar
Harper, J. L. and Sagar, G. R. 1953b. Buttercups. Some aspects of the ecology of buttercups in permanent grassland. Pages 256263 in Proceedings of the 1st British Weed Control Conference. Brighton: British Crop Protection Council.Google Scholar
Hegi, G. 1982. Illustrierte Flora von Mitteleuropa, Tiel 3. Hamburg: Verlag Parey. 504 p.Google Scholar
Holt, J. S. and Boose, A. B. 2000. Potential for spread of Abutilon theophrasti in California. Weed Sci. 48: 4352.Google Scholar
IPCC. 2007. Climate change 2007: the physical science basis. Contribution of Working Group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. 996 p.Google Scholar
ITIS. 2010. Integrated Taxonomc Information System. http://www.itis.gov/. Accessed November 25, 2010.Google Scholar
Kawanabe, S. 1968. Temperature responses and systematics of the Gramineae. Proc. Jap. Soc. Pl. Taxon. 2: 1720.Google Scholar
Köppen, W. 1936. Das geographische System der Klimate. Pages 144 in Köppen, W. and Geiger, R., eds. Handbuch der Klimatologie. Berlin: Verlag von Gebrüder Borntraeger.Google Scholar
Kriticos, D. J., Lamoureaux, S., Bourdôt, G. W., and Pettit, W. 2004. Nassella tussock: current and potential distribution in New Zealand. N. Z. Pl. Protec. 57: 8188.Google Scholar
Kriticos, D. J., Watt, M. S., Potter, K.J.B., Manning, L. K., Alexander, N. S., and Tallent-Halsell, N. 2010. Managing invasive weeds under climate change: considering the current and potential distribution of Buddleja davidii . Weed Res. 51: 8596.Google Scholar
Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J., and Scott, J. K. 2012. CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Method. Ecol. Evol. 3: 5364.Google Scholar
Mamushina, N. S. and Zubkova, E. K. 1996. Effect of temperature on potential photosynthesis and photosynthetic carbon metabolism in C3-Plants with different seasonal patterns of development. Russ. J. Plant Physl. 43: 313318.Google Scholar
Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J.B.F., Stouffer, R. J., and Taylor, K. E. 2007. The WCRP CMIP3 multi-model dataset: A new era in climate change Research. B. Am. Meteorol. Soc. 88: 13831394.Google Scholar
Olesen, J. E. and Bindi, M. 2002. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 16: 239262.Google Scholar
Potter, K.J.B., Kriticos, D. J., Watt, M. S., and Leriche, A. 2009. The current and future potential distribution of Cytisus scoparius: a weed of pastoral systems, natural ecosystems and plantation forestry. Weed Res. 49: 271282.Google Scholar
Reveal, J. L. 2012. Checklist of the vascular plant of Maryland. http://www.plantsystematics.org/reveal/pbio/pb250/mdflorars.html. Accessed January 18, 2012.Google Scholar
Sarukhán, J. 1974. Studies on plant demography: Ranunculus repens L., R. bulbosus L. and R. acris L. II. Reproductive strategies and seed population dynamics. J. Ecol. 62: 151177.Google Scholar
Sarukhán, J. and Harper, J. L. 1973. Studies on plant demography: Ranunculus repens, L., R. bulbosus L. and R. acris L. I. Population flux and survivorship. J. Ecol. 61: 675716.Google Scholar
Siebert, S., Döll, P., Feick, S., Hoogeveen, J., and Frenken, K. 2007. Global Map of Irrigation Areas version 4.0.1. http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm. Accessed November 15, 2011.Google Scholar
Stephens, A.E.A., Kriticos, D. J., and Leriche, A. 2007. The current and future potential geographic distribution of the Oriental fruit fly, Bactrocera dorsalis, (Diptera: Tephritidae). Bull. Entomol. Res. 97: 369378.Google Scholar
Sutherst, R. W., Maywald, G. F., and Kriticos, D. J. 2007. CLIMEX Version 3 User's Guide. Melbourne: Commonwealth Scientific and Industrial Research Organisation. 131 p.Google Scholar
Times Book Group Ltd. 2007. The Times Comprehensive Atlas of the World. 12th ed. London, UK: Times Books. 223 p.Google Scholar
United National Environmental Programme. 2012. Agricultural trends, production, fertilisers, irrigations and pesticides. http://maps.grida.no/go/graphic/agricultural-trends-production-fertilisers-irrigation-and-pesticides. Accessed January 10, 2012.Google Scholar
Watt, M. S., Kriticos, D. J., Lamoureaux, S. L., and Bourdôt, G. W. 2011. Climate change and the potential global distribution of serrated tussock (Nassella trichotoma). Weed Sci. 59: 538545.Google Scholar
Watt, M. S., Kriticos, D. J., and Manning, L. 2009. The current and future potential distribution of Melaleuca quinquenervia . Weed Res. 49: 381390.Google Scholar
Watt, M. S., Kriticos, D. J., Potter, K.J.B., Manning, L. K., Tallent-Halsell, N., and Bourdôt, G. W. 2010. Using species niche models to inform strategic management of weeds in a changing climate: Illustration of the method using the highly invasive Buddleja davidii within New Zealand. Biol. Invasions 12: 37113725.Google Scholar
Webb, C. J., Sykes, W. R., and Garnock-Jones, P. J. 1988. Flora of New Zealand. Volume IV. Naturalised pteridophytes, gymnosperms, dicotyledons. Christchurch: Botany Division, Department of Scientific and Industrial Research, New Zealand. 1365 p.Google Scholar
Whetton, P., McInnes, K. L., Jones, R. N., Hennessy, K. J., Suppiah, R., Page, C. M., Bathols, J., and Durack, P. J. 2005. Australian climate change projection for impact assessment and policy application: a review. http://www.cmar.csiro.au/e-print/open/whettonph_2005a.pdf. Accessed September 24, 2009.Google Scholar
Supplementary material: PDF

Bourdôt et al. supplementary material

Figure S1

Download Bourdôt et al. supplementary material(PDF)
PDF 130.5 KB
Supplementary material: PDF

Bourdôt et al. supplementary material

Figure S2

Download Bourdôt et al. supplementary material(PDF)
PDF 141.3 KB
Supplementary material: PDF

Bourdôt et al. supplementary material

Figure S3

Download Bourdôt et al. supplementary material(PDF)
PDF 130.7 KB
Supplementary material: PDF

Bourdôt et al. supplementary material

Figure S4

Download Bourdôt et al. supplementary material(PDF)
PDF 202.8 KB
Supplementary material: PDF

Bourdôt et al. supplementary material

Figure S5

Download Bourdôt et al. supplementary material(PDF)
PDF 217.4 KB