Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T05:05:21.436Z Has data issue: false hasContentIssue false

Pollen-Mediated Dispersal of Glyphosate-Resistance in Palmer Amaranth under Field Conditions

Published online by Cambridge University Press:  20 January 2017

Lynn M. Sosnoskie*
Affiliation:
Crop and Soil Science, University of Georgia, 4604 Research Way, Tifton, GA, 31794
Theodore M. Webster
Affiliation:
Crop Protection and Management Research Unit, USDA-Agricultural Research Service, 2747 Davis Road, Tifton, GA 31793
Jeremy M. Kichler
Affiliation:
Horticultural Sciences, Gulf Coast REC, 14625 CR 672, Wimauma, FL 33598
Andrew W. MacRae
Affiliation:
Crop and Soil Science, University of Georgia, 4604 Research Way, Tifton, GA, 31794
Timothy L. Grey
Affiliation:
Crop and Soil Science, University of Georgia, 4604 Research Way, Tifton, GA, 31794
A. Stanley Culpepper
Affiliation:
Crop and Soil Science, University of Georgia, 4604 Research Way, Tifton, GA, 31794
*
Corresponding author's E-mail: [email protected]

Abstract

In addition to being a strong competitor with cotton and other row crops, Palmer amaranth has developed resistance to numerous important agricultural herbicides, including glyphosate. The objective of this study was to determine if the glyphosate-resistance trait can be transferred via pollen movement from a glyphosate-resistant Palmer amaranth source to a glyphosate-susceptible sink. In 2006 and 2007 glyphosate-resistant Palmer amaranth plants were transplanted in the center of a 30-ha cotton field. Susceptible Palmer amaranth plants were transplanted into plots located at distances up to 300 m from the edge of the resistant pollen source in each of the four cardinal and ordinal directions. Except for the study plots, the interior of the field and surrounding acreage were kept free of Palmer amaranth by chemical and physical means. Seed was harvested from 249 and 292 mature females in October 2006 and 2007, respectively. Offspring, 14,037 in 2006 and 13,685 in 2007, from glyphosate-susceptible mother plants were treated with glyphosate when the plants were 5 to 7 cm tall. The proportion of glyphosate-resistant progeny decreased with increased distance from the pollen source; approximately 50 to 60% of the offspring at the 1- and 5-m distances were resistant to glyphosate, whereas 20 to 40% of the offspring were resistant at the furthest distances. The development of resistance was not affected by direction; winds were variable with respect to both speed and direction during the peak pollination hours throughout the growing season. Results from this study indicate that the glyphosate-resistance trait can be transferred via pollen movement in Palmer amaranth.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ackerman, J. D. 2000. Abiotic pollen and pollination: ecological, functional, and evolutionary perspectives. Plant Syst. Evol. 222:167185.Google Scholar
Alibert, B., Sellier, H., and Souvre, A. 2005. A combined method to study gene flow from cultivated sugar beet to ruderal beets in the glasshouse and open field. Eur. J. Agron. 23:195208.CrossRefGoogle Scholar
Bensch, C. N., Horak, M. J., and Peterson, D. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci. 51:3743.Google Scholar
Bond, R. C., Nandula, V. K., and Reddy, K. N. 2010. ALS resistance in glyphosate-resistant Palmer amaranth biotypes from Mississippi. Proc. South. Weed Sci. Soc. 63:84. [Abstract].Google Scholar
Borsch, T. 1998. Pollen types in the Amaranthaceae . Grana. 37:129142.CrossRefGoogle Scholar
Brookes, G. and Barfoot, P. 2010. GM crops: global socio-economic and environmental impacts 1996–2008. http://www.pgeconomics.co.uk. Accessed: September 13, 2011.Google Scholar
Burke, I. C., Schroeder, M., Thomas, W. E., and Wilcut, J. W. 2007. Palmer amaranth interference and seed production in peanut. Weed Technol. 21:367371.Google Scholar
Busi, R., Yu, Q., Barrett-Lennard, R., and Powles, S. B. 2008. Long distance pollen-mediated flow of herbicide resistance genes in Lolium rigidum . Theor. Appl. Genet. 117:12811290.CrossRefGoogle ScholarPubMed
Costea, M., Weaver, S. E., and Tardif, F. J. 2004. The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Can. J. Plant Sci. 84:631668.Google Scholar
Costea, M., Weaver, S. E., and Tardif, F. J. 2005. The biology of invasive alien plants in Canada. 3. Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer) Costea & Tardif. Can. J. Plant Sci. 85:507522.Google Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54:620626.Google Scholar
Culpepper, A. S., York, A. C., MacRae, A. W., and Kichler, J. 2008. Glyphosate-resistant Palmer amaranth response to weed management programs in Roundup Ready and Liberty Link cotton. Page 1689 in Proc. Beltwide Cotton Conf., Nashville, TN, January 9–11, 2008. Memphis, TN National Cotton Council.Google Scholar
Darmency, H., Klein, E. K., De Garanbé, T. G., Gouyon, P., Richard-Molard, M., and Muchembled, C. 2009. Pollen dispersal in sugar beet production fields. Theor. Appl. Genet. 118:10831092.Google Scholar
Ehleringer, J. 1983. Ecophysiology of Amaranthus palmeri, a Sonoran Desert summer annual. Oecologia. 57:107112.Google Scholar
Franssen, A. S., Skinner, D. Z., Al-Khatib, K., and Horak, M. J. 2001. Pollen morphological differences in Amaranthus species and interspecific hybrids. Weed Sci. 49:732737.CrossRefGoogle Scholar
Hanson, B. D., Mallory-Smith, C. A., Price, W. J., Shafii, B., Thill, D. C., and Zemetra, R. S. 2005. Interspecific hybridization: potential for movement of herbicide resistance from wheat to jointed goatgrass (Aegilops cylindrica). Weed Technol. 19:674682.Google Scholar
Heap, I. M. 2011. International Survey of Herbicide Resistant Weeds. (http://www.weedscience.org/in.asp). Accessed: September 13, 2011.Google Scholar
Hidayat, I., Baker, J., and Preston, C. 2006. Pollen-mediated gene flow between paraquat-resistant and susceptible hare barley (Hordeum leporinum). Weed Sci. 54:685689.CrossRefGoogle Scholar
Hu, X. and He, F. 2006. Seed and pollen flow in expanding a species' range. J. Theor. Biol. 240:662672.CrossRefGoogle ScholarPubMed
Jasieniuk, M., Brûlé-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.Google Scholar
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci. 42:523527.Google Scholar
MacRae, A. W., Culpepper, A. S., Webster, T. M., and Kichler, J. M. 2007. The effect of glyphosate-resistant Palmer amaranth density and time of establishment on yield of cotton. Proc. South. Weed Sci. Soc. 60:228.Google Scholar
Massinga, R. A., Al-Khatib, K., St. Amand, P., and Miller, J. F. 2003. Gene flow from imidazolinone-resistant domesticated sunflower to wild relatives. Weed Sci. 51:854862.CrossRefGoogle Scholar
Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. 2001. Interference of Palmer amaranth in corn. Weed Sci. 49:202208.Google Scholar
Matus-Cádiz, M. A., Hucl, P., Horak, M. J., and Blomquist, L. K. 2004. Gene flow in wheat at the field scale. Crop Sci. 44:718727.Google Scholar
Michalski, S. G. and Durka, W. 2009. Pollination mode and life form strongly affect the relation between mating system and pollen to ovule ratio. New Phytol. 183:470479.Google Scholar
Morgan, G. D., Baumann, P. A., and Chandler, J. M. 2001. Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol. 15:408412.Google Scholar
[NASS] National Agricultural Statistics Service. 2011. Statistics by subject. http://www.nass.usda.gov/Statistics_by_Subject/index.php?sector=CROPS. Accessed: September 13, 2011.Google Scholar
Novack, S. J. 2007. The role of evolution in the invasion process. Proc. Nat. Acad. Sci. U.S.A. 104:36713672.Google Scholar
Petit, R. J. 2004. Biological invasions at the gene level. Divers. Distrib. 10:159165.Google Scholar
Primack, R. B. 1978. Evolutionary aspects of wind pollination in genus Plantago (Plantaginaceae). New Phytol. 81:449458.Google Scholar
Reddi, C. S. and Reddi, N. S. 1986. Pollen production in some anemophilous angiosperms. Grana. 25:5561.Google Scholar
Rieger, M. A., Lamond, M., Preston, C., Powles, S. B., and Roush, R. T. 2002. Pollen-mediated movement of herbicide resistance between commercial canola fields. Science. 296:23862388.Google Scholar
Rowland, M. W., Murray, D. S., and Verhalen, L. M. 1999. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci. 47:305309.Google Scholar
Saeglitz, C., Pohl, M., and Bartsch, D. 2000. Monitoring gene flow from transgenic sugar beet using cytoplasmic male-sterile bait plants. Mol. Ecol. 9:20352040.Google Scholar
Sosnoskie, L. M., Kichler, J. M., Wallace, R. D., and Culpepper, A. S. 2011. Multiple resistance in Palmer amaranth to glyphosate and pyrithiobac confirmed in Georgia. Weed Sci. 59:321325.CrossRefGoogle Scholar
Sosnoskie, L. M., Webster, T. M., Dales, D., Rains, G. C., Grey, T. L., and Culpepper, A. S. 2009. Pollen grain size, density, and settling velocity for Palmer amaranth (Amaranthus palmeri). Weed Sci. 57:404409.Google Scholar
Sosnoskie, L. M., Webster, T. M., Kichler, J. M., MacRae, A. W., and Culpepper, A. S. 2007. Preliminary estimates of glyphosate-resistant Amaranthus palmeri pollen dispersal distances. Page 28 in Proc. Beltwide Cotton Conf., New Orleans, LA, January 9–12, 2007. Memphis, TN National Cotton Council.Google Scholar
Tonsor, S. J. 1985. Lepto-kurtic pollen flow, non-leptokurtic gene flow in a wind-pollinated herb, Plantago lanceolata L. Oecologia. 67:442446.Google Scholar
Trucco, F., Zheng, D., Woodyard, A. J., Walter, J. R., Tatum, T. C., Rayburn, A. L., and Tranel, P. J. 2007. Nonhybrid progeny from crosses of dioecious amaranths: implications for gene-flow research. Weed Sci. 55:119122.Google Scholar
Vencill, W. K., Prostko, E., and Webster, T. E. 2002. Is Palmer amaranth (Amaranthus palmeri) resistant to ALS and dinitroaniline herbicides? Proc. South. Weed. Sci. Soc. 55:189.Google Scholar
Watson, S. 1877. Descriptions of new species of plants, with revisions of certain genera. Proc. Amer. Acad. Arts Sci. 12:246278.Google Scholar
Webster, T. M. and Sosnoskie, L. M. 2010. Loss of glyphosate efficacy: a changing weed spectrum in Georgia cotton. Weed Sci. 58:7379.Google Scholar
Wise, A. M., Grey, T. L., Prostko, E. P., Vencill, W. K., and Webster, T. M. 2009. Establishing the geographic distribution level of acetolactate synthase resistance of Palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technol. 23:214220.Google Scholar