Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T21:04:10.299Z Has data issue: false hasContentIssue false

Pollen Grain Size, Density, and Settling Velocity for Palmer Amaranth (Amaranthus palmeri)

Published online by Cambridge University Press:  20 January 2017

L. M. Sosnoskie*
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA
T. M. Webster
Affiliation:
Crop Protection and Management Research Unit, USDA Agricultural Research Service, Tifton, GA 31793-0748
D. Dales
Affiliation:
Department of Biological and Agricultural Engineering, University of Georgia, Tifton, GA 31793-0748
G. C. Rains
Affiliation:
Department of Biological and Agricultural Engineering, University of Georgia, Tifton, GA 31793-0748
T. L. Grey
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA
A. S. Culpepper
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA
*
Corresponding author's E-mail: [email protected]

Abstract

Palmer amaranth is resistant to several herbicides, including glyphosate, and there is concern that the resistance traits can be transferred between spatially segregated populations via pollen movement. The objective of this study was to describe the physical properties of Palmer amaranth pollen, specifically size, density, and settling velocity (Vs), that influence pollen flight. The mean diameter for Palmer amaranth pollen, as determined by light microscopy, was 31 µm (range of 21 to 38 µm); mean pollen diameter as measured with the use of an electronic particle sizer was 27 µm (range of 21 to 35 µm). The mean density of the solid portion of the pollen grain was 1,435 kg m−3. Accounting for the density of the aqueous fraction, the mean density of a fully hydrated pollen grain was 1,218 kg m−3. By Stokes's law, the estimated mean theoretical Vs for individual Palmer amaranth pollen grains was 3.4 cm s−1 for the range of pollen diameters with a mean of 31 µm and 2.6 cm s−1 for the range of pollen diameters with a mean of 27 µm. Results from laboratory studies indicated the majority of single pollen grains settled at a rate of 5.0 cm s−1. The difference between the theoretical and empirical estimates of Vs was likely due to changes in pollen density and shape postanthesis, which are not accounted for using Stokes's law, as well as the presence pollen clusters.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ackerman, J. D. 2000. Abiotic pollen and pollination: ecological, functional, and evolutionary perspectives. Plant Syst. Evol. 222:167185.CrossRefGoogle Scholar
Alibert, B., Sellier, H., and Souvre, A. 2005. A combined method to study gene flow from cultivated sugar beet to ruderal beets in the glasshouse and open field. Eur. J. Agron. 23:195208.Google Scholar
Aylor, D. E. 2002. Settling speed of corn (Zea mays) pollen. J. Aerosol Sci. 33:16011607.CrossRefGoogle Scholar
Bodmer, H. 1922. Über den windpollen. Nat. Tech. 3:294298.Google Scholar
Borsch, T. 1998. Pollen types in the Amaranthaceae. Grana. 37:129142.CrossRefGoogle Scholar
Burke, I. C., Schroeder, M., Thomas, W. E., and Wilcut, J. W. 2007. Palmer amaranth interference and seed production in peanut. Weed Technol. 21:367371.CrossRefGoogle Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54:620626.Google Scholar
Culpepper, A. S., York, A. C., and Kichler, J. M. 2008. University of Georgia Herbicide Programs for Controlling Glyphosate-Resistant Palmer Amaranth in 2008 Cotton. Tifton, GA University of Georgia College of Agricultural and Environmental Sciences, Circular No. 924. 2 p.Google Scholar
Di-Giovanni, F., Kevan, P. G., and Nasr, M. E. 1995. The variability in settling velocities of some pollen and spores. Grana. 34:3944.Google Scholar
Duke, S. O. and Powles, S. B. 2008. Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64:319325.CrossRefGoogle ScholarPubMed
Durham, O. C. 1946. The volumetric incidence of atmospheric allergens III. Rate of fall of pollen grains in still air. J. Allergy. 17:7078.CrossRefGoogle Scholar
Ehleringer, J. 1983. Ecophysiology of Amaranthus palmeri, a Sonoran Desert summer annual. Oecologia. 57:107112.Google Scholar
Ehleringer, J. R. and Hammond, S. D. 1987. Solar tracking and photosynthesis in cotton leaves. Agric. For. Meteorol. 39:2535.Google Scholar
Ellstrand, N. C. and Schierenbeck, K. A. 2000. Hybridization as a stimulus for the evolution of invasiveness in plants? Proc. Natl. Acad. Sci. USA. 97:70437050.Google Scholar
Ferrandino, F. J. and Aylor, D. E. 1984. Settling speed of clusters of spores. Phytopathology. 74:969972.CrossRefGoogle Scholar
Franssen, A. S., Skinner, D. Z., Al-Khatib, K., Horak, M. J., and Kulakow, P. A. 2001. Interspecific hybridization and gene flow of ALS resistance in Amaranthus species. Weed Sci. 49:598606.CrossRefGoogle Scholar
Gossett, B. J., Murdock, E. C., and Toler, J. E. 1992. Resistance of Palmer amaranth (Amaranthus palmeri) to the dinitroaniline herbicides. Weed Technol. 6:587591.Google Scholar
Hanson, B. D., Mallory-Smith, C. A., Price, W. J., Shafii, B., Thill, D. C., and Zemetra, R. S. 2005. Interspecific hybridization: potential for movement of herbicide resistance from wheat to jointed goatgrass (Aegilops cylindrica). Weed Technol. 19:674682.Google Scholar
Harrington, J. B. and Metzger, J. 1963. Ragweed pollen density. Am. J. Bot. 50:532539.CrossRefGoogle Scholar
Heap, I. M. 2008. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/in.asp. Accessed March 1, 2008.Google Scholar
Hinds, W. C. 1999. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. 2nd ed. New York J. Wiley. 483 p.Google Scholar
Hoerner, S. F. 1965. Fluid-dynamic drag: practical information on aerodynamic drag and hydrodynamic resistance. Bakersfield, CA Hoerner Fluid Dynamics. 317.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci. 48:347355.CrossRefGoogle Scholar
Jackson, S. T. and Lyford, M. E. 1999. Pollen dispersal models in quarternary plant ecology: assumptions, parameters, and prescriptions. Bot. Rev. 65:3975.CrossRefGoogle Scholar
Jasieniuk, M., Brûlé-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.Google Scholar
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci. 42:523527.CrossRefGoogle Scholar
Legleiter, T. R. and Bradley, K. W. 2008. Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci. 56:582587.Google Scholar
Luna, V. S., Figueroa, M., Baltazar, J. M., Gomez, B. L., Townsend, R. R., and Schoper, J. B. 2001. Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Sci. 41:15511557.CrossRefGoogle Scholar
Marshall, M. W., Al-Khatib, K., and Loughin, T. 2001. Gene flow, growth, and competitiveness of imazethapyr-resistant common sunflower. Weed Sci. 49:1421.Google Scholar
Massinga, R. A., Al-Khatib, K., St Amand, P., and Miller, J. F. 2003. Gene flow from imidazolinone-resistant domesticated sunflower to wild relatives. Weed Sci. 51:854862.CrossRefGoogle Scholar
Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. 2001. Interference of Palmer amaranth in corn. Weed Sci. 49:202208.CrossRefGoogle Scholar
Matus-Cadiz, M. A., Hucl, P., Horak, M. J., and Blomquist, L. K. 2004. Gene flow in wheat at the field scale. Crop Sci. 44:718727.CrossRefGoogle Scholar
Messeguer, J., Marfa, V., Catala, M. M., Guiderdoni, E., and Mele, E. 2004. A field study of pollen-mediated gene flow from Mediterranean GM rice to conventional rice and the red rice weed. Mol. Breeding. 13:103112.Google Scholar
Morgan, G. D., Baumann, P. A., and Chandler, J. M. 2001. Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol. 15:408412.CrossRefGoogle Scholar
Muller, J. 1979. Form and function of angiosperm pollen. Ann. Mo. Bot. Gard. 66:593632.Google Scholar
Niklas, K. J. 1985. The aerodynamics of wind pollination. Bot. Rev. 51:328386.Google Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol. 22:108113.CrossRefGoogle Scholar
Patzoldt, W. L., Tranel, P. J., and Hager, A. G. 2005. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci. 53:3036.Google Scholar
Peterson, D. E. 1999. The impact of herbicide-resistant weeds on Kansas agriculture. Weed Technol. 13:632635.Google Scholar
Primack, R. B. 1978. Evolutionary aspects of wind pollination in Genus Plantago (Plantaginaceae). New Phytol. 81:449458.CrossRefGoogle Scholar
Reist, P. C. 1984. Introduction to Aerosol Science. New York Macmillan. 299 p.Google Scholar
Roulston, T. H. and Buchmann, S. L. 2000. A phylogenetic reconsideration of the pollen starch-pollination correlation. Evol. Ecol. Res. 2:627643.Google Scholar
Saeglitz, C., Pohl, M., and Bartsch, D. 2000. Monitoring gene flow from transgenic sugar beet using cytoplasmic male-sterile bait plants. Mol. Ecol. 9:20352040.CrossRefGoogle ScholarPubMed
Sosnoskie, L. M., Webster, T. M., Kichler, J. M., MacRae, A. W., and Culpepper, A. S. 2007. Preliminary estimates of glyphosate-resistant Amaranthus palmeri pollen dispersal distances. Pages 1228. In Main, C. L. Proceedings of the Beltwide Cotton Conference, New Orleans, LA.Google Scholar
Steckel, L. E., Main, C. L., Ellis, A. T., and Mueller, T. C. 2008. Palmer amaranth (Amaranthus palmeri) in Tennessee has low level glyphosate resistance. Weed Technol. 22:119123.Google Scholar
Tranel, P. J., Wassom, J. J., Jeschke, M. R., and Rayburn, A. L. 2002. Transmission of herbicide resistance from a monoecious to a dioecious weedy Amaranthus species. Theor. Appl. Genet. 105:674679.Google Scholar
Trucco, F., Jeschke, M. R., Rayburn, A. L., and Tranel, P. J. 2005b. Amaranthus hybridus can be pollinated frequently by A. tuberculatus under field conditions. Heredity. 94:6470.Google Scholar
Trucco, F., Tatum, T., Rayburn, A. L., and Tranel, P. J. 2005a. Fertility, segregation at a herbicide-resistance locus, and genome structure in BC1 hybrids from two important weedy Amaranthus species. Mol. Ecol. 14:27172728.Google Scholar
Tsukada, M. 1967. Chenopod and amaranth pollen: electron-microscopic identification. Science. 157:8082.CrossRefGoogle ScholarPubMed
[USDA-AMS] United States Department of Agriculture—Agricultural Marketing Service 2007. Cotton Varieties Planted 2007 Crop. Memphis, TN: USDA-AMS Cotton Program, Market News Branch. Public. No. mp_cn833.Google Scholar
Vaissiere, B. E. and Vinson, S. B. 1994. Pollen morphology and its effect on pollen collection by honey bees, Apis mellifera L. (Hymenoptera: Apidae), with special reference to upland cotton, Gossypium hirsutum L. (Malvaceae). Grana. 33:128138.Google Scholar
van Hout, R. and Katz, J. 2004. A method for measuring the density of irregularly shaped biological aerosols such as pollen. J. Aerosol Sci. 35:13691384.Google Scholar
Warwick, S. I., Legere, A., Simard, M. J., and James, T. 2008. Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol. Ecol. 17:13871395.Google Scholar
Webster, T. M. 2005. Weed survey—southern states: broadleaf crops subsection. Pages 291306. in. Proceedings of the Southern Weed Science Society. Charlotte, NC Southern Weed Science Society.Google Scholar
Wetzel, D. K., Horak, M. J., Skinner, D. Z., and Kulakow, P. A. 1999. Transferral of herbicide resistance traits from Amaranthus palmeri to Amaranthus rudis. Weed Sci. 47:538543.Google Scholar
Wilkinson, M. J., Elliott, L. J., Allainguillaume, J., Shaw, M. W., Norris, C., Welters, R., Alexander, M., Sweet, J., and Mason, D. C. 2003. Hybridization between Brassica napus and B. rapa on a national scale in the United Kingdom. Science. 302:457459.CrossRefGoogle Scholar