Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T16:07:07.507Z Has data issue: false hasContentIssue false

Picloram Dissipation in a Small Southwestern Stream

Published online by Cambridge University Press:  12 June 2017

Thomas N. Johnsen Jr.
Affiliation:
U.S. Dep. Agric., Sci. Ed. Admin., Agric. Res. Tucson, AZ 85719
William L. Warskow
Affiliation:
Watershed Div., Salt River Project, Phoenix, AZ 85001

Abstract

Picloram (4-amino-3,5,6-trichloropicolinic acid) injected directly into a small, central-Arizona stream was lost by normal stream flow actions, such as the mixing of fast- and slow-moving water, and the interchange of surface and subsurface water in gravel and sand beds along the stream. Picloram was injected at a concentration of 6.26 ppmw; the maximum amount detected was 2.362 ppmw at 0.4 km downstream, 0.943 ppmw at 0.8 km, 0.316 ppmw at 1.6 km, 0.014 ppmw at 3.2 km, 0.001 ppmw at 6.4 km, and none further downstream. Picloram was detected near the limits of detection (0.001 to 0.004 ppmw) 2 days after injection at the 0.4-, 0.8-, and 1.6-km sites. In photodegradation tests, sunlight decomposed 57% of the picloram in containers after 8.8 h of exposure.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bath, T. D., Vandergrift, A. E., and Hermann, T. S. 1970. Concentration profiles downstream from instantaneous pollution loadings. J. Water Pollut. Control Fed. 42:582595.Google Scholar
2. Bovey, R. W., Dowler, C. C., and Merkle, M. G. 1969. The persistence and movement of picloram in Texas and Puerto Rican soils. Pestic. Monit. J. 3:177181.Google Scholar
3. Bovey, R. W., Ketchersid, M. L., and Merkle, M. G. 1970. Comparison of salt and ester formulations of picloram. Weed Sci. 18: 447451.CrossRefGoogle Scholar
4. Bovey, R. W., Richardson, C., Burnett, E., Merkle, M. G., and Meyer, R. E. 1978. Loss of spray and pelleted picloram in surface runoff water. J. Environ. Qual. 7:178180.Google Scholar
5. Bovey, R. W. and Scifres, C. J. 1971. Residual characteristics of picloram in grassland ecosystems. Tex. Agric. Exp. Stn. B-1111. 24 pp.Google Scholar
6. Crosby, D. G. and Li, Ming-Yu. 1969. Herbicide photodecomposition. Pages 321363 in Kearner, P. C. and Kaufman, D. D., eds. Degradation of Herbicides. Marcel Dekker, Inc., New York.Google Scholar
7. Davis, E. A. and Ingebo, P. A. 1973. Picloram movement from a chaparral woodland. Water Resour. Res. 9:13041313.CrossRefGoogle Scholar
8. Grover, R. 1973. Movement of picloram in soil columns. Can. J. Soil Sci. 53:307314.Google Scholar
9. Hall, R. C., Giam, C. S., and Merkle, M. G. 1968. The photolytic degradation of picloram. Weed Res. 8:292297.CrossRefGoogle Scholar
10. Hamaker, J. W., Johnston, H., Martin, R. T., and Redemann, C. T. 1963. A picolinic acid derivative: A plant growth regulator. Science 141:363.CrossRefGoogle ScholarPubMed
11. Hay, J. R. (ed.) 1974. Picloram: The effects of its use as a herbicide on environmental quality. Assoc. Common Sci. Criteria Environ. Qual. Nat. Res. Coun. Canada. NRCC no. 13684. 128 pp.Google Scholar
12. Koller, L. R. 1965. Ultraviolet Radiation. 2nd Ed. John Wiley & Sons, New York. 312 pp.Google Scholar
13. Lynn, G. E. 1965. A review of toxicological information on Tordon herbicides. Down Earth 20(4):68.Google Scholar
14. Merkle, M. G., Bovey, R. W., and Davis, F. S. 1967. Factors affecting the persistence of picloram in soil. Agron. J. 59:413415.Google Scholar
15. Mosier, A. R. and Guenzi, W. D. 1973. Picloram photolytic decomposition. J. Agr. Food Chem. 21:835837.CrossRefGoogle ScholarPubMed
16. Rainwate, F. H. and Thatcher, L. L. 1960. Methods for the collection and analysis of water samples. Water Supply Pap. No. 1454. U.S. Geol. Survey Wash. D.C. 301 pp.Google Scholar
17. Reiter, R. 1968. The annual march and dependence of ultraviolet radiation on altitude in high mountains. Pages 5154 in von Deschwanden, J. S., Schram, Karin, and Thams, J. D., eds. Der Mensch in Klima der Alpen. Verlag Hans Huber, Bern.Google Scholar
18. Schneider, A. D., Wiese, A. F., and Jones, O. R. 1977. Movement of three herbicides in a fine sand aquifer. Agron. J. 69:432436.CrossRefGoogle Scholar
19. Scifres, C. J., McCall, H. G., Maxey, R., and Tai, H. 1977. Residual properties of 2,4,5-T and picloram in sandy rangeland soils. J. Environ. Qual. 6:3642.CrossRefGoogle Scholar
20. Smith, C. N., Bailery, G. W., Leonard, R. A., and Langdale, G. W. 1978. Transport of agricultural chemicals from small upland piedmont watersheds. EPA-600/3-78-056, May 1978. U.S. Environ. Prot. Agen., Athens, Georgia. 364 pp.Google Scholar
21. Trichell, D. W., Morton, H. L., and Merkle, M. G. 1968. Loss of herbicides in runoff water. Weed Sci. 16:447449.Google Scholar
22. Turner, G. O. and Nilsen, A. 1967. Progress in the development of equipment for low volume application of liquid pesticides to soil. Down Earth 22(4):1819.Google Scholar
23. Valentine, K. P. and Bingham, S. W. 1976. Influence of algae on amitrole and triazine residues in water. Can. J. Bot. 54:21002107.Google Scholar