Published online by Cambridge University Press: 12 June 2017
Preliminary greenhouse studies indicated the presence of a synergistic interaction between low rates of fluometuron [1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea] or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] in combination with linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea] or chlorbromuron [3-(4-bromo-3-chlorophenyl)-1-methoxy-1-methylurea]. In a 3-yr field study, moderate injury of cotton (Gossypium hirsutum L. ‘Stoneville 213’) with no yield reduction was observed with fluometuron or diuron at 1.68 and 1.12 kg/ha, respectively, but higher rates (5.04 and 3.36 kg/ha, respectively) caused injury and yield reductions. Soybean [Glycine max (L.) Merr. ‘Hill’] injury ratings during the second year indicated a synergistic interaction between residue from fluometuron at 5.04 kg/ha combined with linuron at 2.48 kg/ha or chlorbromuron at 3.85 kg/ha, and from diuron at 3.36 kg/ha combined with linuron at 2.48 kg/ha. These interactions were not apparent in soybean yield data. Soybean injury the third year ranged from 30 to 60% with single or repeated applications of linuron or chlorbromuron, although yields were not affected. Residual fluometuron and diuron from 2 yr of application at 5.04 and 3.36 kg/ha, respectively, injured soybeans, but did not reduce yields. Significant synergistic interactions were observed through injury and yield measurements after two annual applications of fluometuron at 5.04 kg/ha combined with linuron or chlorbromuron. A synergistic interaction was detected in soybean yields with chlorbromuron at 3.85 kg/ha preceded by two annual applications of diuron at 3.36 kg/ha. Such interactions may occur under field conditions, but are unlikely to be economically significant. Chemical analysis indicated little evidence of accumulation, even with repeated application of fluometuron or diuron at 5.04 and 3.36 kg/ha, respectively.