Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-16T20:42:13.082Z Has data issue: false hasContentIssue false

Pennsylvania smartweed interference and achene production in cotton

Published online by Cambridge University Press:  20 January 2017

Shawn D. Askew
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620

Abstract

Studies were conducted to determine the effect of interference between Pennsylvania smartweed and cotton on plant growth and productivity. Pennsylvania smartweed remained shorter than cotton until at least 80 d after cotton planting. However, Pennsylvania smartweed produced considerable dry biomass by cotton harvest. Pennsylvania smartweed biomass per plant was not affected by weed density when grown with cotton. When grown alone, Pennsylvania smartweed produced 1,640 and 2,060 g dry biomass plant−1 depending on the year. This biomass was over four times greater than the biomass produced by plants grown with cotton. Cotton lint yield decreased between 1.3 and 1.1 kg ha−1 with each gram increase in weed dry biomass per meter of row. The relationship between Pennsylvania smartweed density and cotton percent yield loss was described by the hyperbolic function. The estimated coefficients a (maximum yield loss as density approaches infinity) and i (yield loss per unit density as density approaches zero) were 102 ± 23 and 51 ± 12, respectively, in 1998 and 53 ± 1 and 98 ± 5, respectively, in 2000. Pennsylvania smartweed achene production was also described by the hyperbolic function. Estimated achene production at 1 plant m−1 cotton row was 18,000 and 26,000 achenes m−2 in 1998 and 2000, respectively.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Askew, S. D. and Wilcut, J. W. 2001a. Interference and seed-rain dynamics of three Polygonum species in cotton. Weed Sci. Soc. Am. Abstr. 41:24.Google Scholar
Askew, S. D. and Wilcut, J. W. 2001b. Tropic croton (Croton glandulosus) interference in cotton (Gossypium hirsutum). Weed Sci. 49:184189.Google Scholar
Bailey, W. A., Wilcut, J. W., and Askew, S. D. 1999. Velvetleaf (Abutilon theophrasti) interference and seed-rain dynamics in cotton. Proc. South. Weed Sci. Soc. 52:163.Google Scholar
Bryson, C. T. 1987. Interference of hemp sesbania (Sesbania exaltata) with cotton (Gossypium hirsutum). Weed Sci. 35:314318.Google Scholar
Buchanan, G. A. and Burns, E. R. 1970. Influence of weed competition on cotton. Weed Sci. 18:149154.CrossRefGoogle Scholar
Buchanan, G. A., Crowley, R. H., and McLaughlin, R. D. 1977. Competition of prickly sida with cotton. Weed Sci. 25:106110.Google Scholar
Buchanan, G. A., Crowley, R. H., Street, J. E., and McGuire, J. A. 1980. Competition of sicklepod (Cassia obtusifolia) and redroot pigweed (Amaranthus retroflexus) with cotton (Gossypium hirsutum). Weed Sci. 28:258262.Google Scholar
Byrd, J. D. Jr. and Coble, H. D. 1991. Interference of common cocklebur (Xanthium strumarium) and cotton (Gossypium hirsutum). Weed Technol. 5:270278.Google Scholar
Coble, H. D. and Ritter, R. L. 1978. Pennsylvania smartweed (Polygonum pensylvanicum) interference in soybeans (Glycine max). Weed Sci. 26:556559.Google Scholar
Consaul, L. L., Warwick, S. I., and McNeill, J. 1991. Allozyme variation in the Polygonum lapathifolium complex. Can. J. Bot. 69:22612270.CrossRefGoogle Scholar
Cousens, R. 1985. A simple model relating yield loss to weed density. Ann. Appl. Biol. 107:239252.Google Scholar
Crowley, R. H. and Buchanan, G. A. 1978. Competition of four morningglory (Ipomoea spp.) species with cotton (Gossypium hirsutum). Weed Sci. 26:484488.Google Scholar
Czapar, G. F., Curry, M. P., and Wax, L. M. 1997. Grower acceptance of economic thresholds for weed management in Illinois. Weed Technol. 11:828831.CrossRefGoogle Scholar
Dowler, C. C. 1998. Weed survey—southern states. Proc. South. Weed Sci. Soc. 51:299322.Google Scholar
Draper, N. R. and Smith, H. 1981. Applied Regression Analysis. New York: J. Wiley. pp. 3242 and 511.Google Scholar
Forcella, F., Peterson, D. H., and Barbour, J. C. 1996. Timing and measurement of weed seed shed in corn (Zea mays). Weed Technol. 10:535543.Google Scholar
Jasieniuk, M., Maxwell, B. D., Anderson, R. L., et al. 1999. Site-to-site and year-to-year variation in Triticum aestivum-Aegilops cylindrica interference relationships. Weed Sci. 47:529537.Google Scholar
Jordan, J. L., Staniforth, D. W., and Jordan, C. M. 1982. Parental stress and prechilling effects on Pennsylvania smartweed (Polygonum pensylvanicum) achenes. Weed Sci. 30:243248.CrossRefGoogle Scholar
Mabry, C. M., Jasienski, M., Coleman, J. S., and Bazzaz, F. A. 1997. Genotypic variation in Polygonum pensylvanicum: nutrient effects on plant growth and aphid infestation. Can. J. Bot. 75:546551.CrossRefGoogle Scholar
McConnaughay, K.D.M. and Bazzaz, F. A. 1987. The relationship between gap size and performance of several colonizing annuals. Ecology 68:411416.Google Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.Google Scholar
Mercer, K. L., Murray, D. S., and Verhalen, L. M. 1987. Interference of unicorn-plant (Proboscidea louisianica) with cotton (Gossypium hirsutum). Weed Sci. 35:807812.Google Scholar
Mitchell, R. S. and Dean, J. K. 1978. Polygonaceae (Buckwheat Family) of New York State. Albany, NY: University of the State of New York, Bull. No. 431. pp. 4648.Google Scholar
Neubauer, B. F. 1971. The development of the achene of Polygonum pensylvanicum: embryo, endosperm, and pericarp. Am. J. Bot. 58:655664.CrossRefGoogle Scholar
Parrish, J.A.D. and Bazzaz, F. A. 1976. Underground niche separation in successional plants. Ecology 57:12811288.Google Scholar
Pickett, S.T.A. and Bazzaz, F. A. 1978. Organization of an assemblage of early successional species of a soil moisture gradient. Ecology 59:12481255.CrossRefGoogle Scholar
Radford, A. E., Ahles, H. E., and Bell, C. R. 1968. Manual of the Vascular Flora of the Carolinas. Chapel Hill, NC: University of North Carolina Press. pp. 662663.Google Scholar
Rawlings, J. O., Pantula, S. G., and Dickey, D. A. 1998. Applied Regression Analysis—A Research Tool. 2nd ed. New York: Springer. pp. 486489.Google Scholar
Rowland, M. W., Murray, D. S., and Verhalen, L. M. 1999. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci. 47:305309.CrossRefGoogle Scholar
[SAS] Statistical Analysis Systems. 1998. SAS User's Guide. Release 7.00. Cary, NC: Statistical Analysis Systems Institute. 1028 p.Google Scholar
Scott, G. H., Askew, S. D., Bennett, A. C., and Wilcut, J. W. 2001. Economic evaluation of HADSS computer program for weed management in nontransgenic and transgenic cotton. Weed Sci. 49:549557.CrossRefGoogle Scholar
Scott, G. H., Askew, S. D., Wilcut, J. W., and Brownie, C. 2000. Datura stramonium interference and seed rain in Gossypium hirsutum . Weed Sci. 48:613617.CrossRefGoogle Scholar
Smith, D. T., Baker, R. V., and Steele, G. L. 2000. Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technol. 14:122126.Google Scholar
Smith, B. S., Murray, D. S., and Weeks, D. L. 1990a. Velvetleaf (Abutilon theophrasti) interference with cotton. Weed Technol. 4:799803.Google Scholar
Smith, B. S., Pawlak, J. A., Murray, D. S., Verhalen, L. M., and Green, J. D. 1990b. Interference from established stands of silverleaf nightshade (Solanum elaeagnifolium) on cotton (Gossypium hirsutum) lint yield. Weed Sci. 38:129133.Google Scholar
Snipes, C. E., Buchanan, G. A., Street, J. E., and McGuire, J. A. 1982. Competition of common cocklebur (Xanthium pensylvanicum) with cotton (Gossypium hirsutum). Weed Sci. 30:553556.Google Scholar
Staniforth, R. J. and Cavers, P. B. 1976. An experimental study of water dispersal in Polygonum spp. Can. J. Bot. 54:25872596.Google Scholar
Staniforth, R. J. and Cavers, P. B. 1979a. Distribution and habitats of four annual smartweeds in Ontario. Can. Field-Nat. 93:378385.Google Scholar
Staniforth, R. J. and Cavers, P. B. 1979b. Field and laboratory germination responses of achenes of Polygonum lapathifolium, P. pensylvanicum, and P. pensylvanicum . Can. J. Bot. 57:877885.Google Scholar
Stoller, E. W. and Wax, L. M. 1973. Periodicity of germination and emergence of some annual weeds. Weed Sci. 21:574580.Google Scholar
Stoller, E. W. and Wax, L. M. 1974. Dormancy and fate of some annual weed seeds in the soil. Weed Sci. 22:151155.Google Scholar
Sultan, S. E. 1996. Phenotypic plasticity for offspring traits in Polygonum pensylvanicum . Ecology 77:17911807.Google Scholar
Sultan, S. E. and Bazzaz, F. A. 1993. Phenotypic plasticity in Polygonum persicaria: I. Diversity and uniformity in genotypic norms of reaction to light. Evolution 47:10091031.Google Scholar
Thomas, S. C. and Bazzaz, F. A. 1993. The genetic component in plant size hierachies, norms of reaction to density in a Polygonum species. Ecol. Monogr. 63:231249.Google Scholar
Tremmel, D. C. and Bazzaz, F. A. 1993. How neighbor canopy architecture affects target plant performance. Ecology 74:21142124.Google Scholar
Weiner, J. and Thomas, S. C. 1992. Competition and allometry in three species of annual plants. Ecology 73:648656.CrossRefGoogle Scholar
Wilcut, J. W., Askew, S. D., Brecke, B. J., et al. 1999. A beltwide evaluation of weed management systems in transgenic and non-transgenic cotton. Proc. South. Weed Sci. Soc. 52:189.Google Scholar
Wilcut, J. W., York, A. C., and Jordan, D. L. 1995. Weed management programs for oil seed crops. Pages 343400 In Smith, A. E., ed. Handbook of Weed Management Programs. New York: Marcel Dekker.Google Scholar
York, A. C. and Culpepper, A. S. 1999. Weed management in cotton. Pages 73111 In 1999 Cotton Information. Raleigh, NC: North Carolina Cooperative Extension Service.Google Scholar
Zangerl, A. R. and Bazzaz, F. A. 1983. Responses of an early and a late successional species of Polygonum to variations in resource availability. Oecologia 56:397404.CrossRefGoogle Scholar