Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T19:16:55.986Z Has data issue: false hasContentIssue false

Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-inhibiting herbicides

Published online by Cambridge University Press:  12 June 2017

Christy L. Sprague
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Loyd M. Wax
Affiliation:
USDA/ARS, Crop Protection Research, University of Illinois, Urbana, IL 61801
Michael J. Horak
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506

Abstract

Imazethapyr-resistant biotypes of Palmer amaranth and common waterhemp were studied to determine the magnitude of resistance and cross-resistance to three acetolactate synthase (ALS)-inhibiting herbicides. Resistant biotypes of Palmer amaranth and common waterhemp demonstrated > 2,800- and > 130-fold resistance to phytotoxicity of imazethapyr compared to susceptible biotypes, respectively. Concentrations of imazethapyr required for 50% in vivo inhibition of ALS activity were at least > 13,100 and > 1,900 times greater for resistant biotypes of Palmer amaranth and common waterhemp, respectively, compared to susceptible plants. Resistant biotypes of both species demonstrated cross-resistance to the sulfonylurea herbicides thifensulfuron and chlorimuron at the whole plant and enzyme levels, indicating that a less sensitive ALS enzyme confers this resistance to these plants.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1997 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beyer, E. M., Duffy, M. J., Hay, J. V., and Schlueter, D. D. 1988. Sulfonylureas. in Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation, and Mode of Action. Volume 3. New York: Marcel-Dekker, pp. 117190.Google Scholar
Brown, H. M. 1990. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic. Sci. 29: 263281.CrossRefGoogle Scholar
Devine, M. D., Marles, M.A.S., and Hall, L. M. 1991. Inhibition of acetolactate synthase in susceptible and resistant biotypes of Stellaria media . Pestic. Sci. 31: 273280.Google Scholar
Gerwick, B. C., Mireles, L. C., and Eilers, R. J. 1993. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol. 7: 519524.Google Scholar
Gerwick, B. C., Subramanian, M. V., Loney-Gallant, V. I., and Chandler, D. P. 1990. Mechanism of action of the 1,2,4-triazolo(1,5-α)pyrimidines. Pestic. Sci. 29: 357364.Google Scholar
Hinz, J. R. and Owen, M.D.K. 1995. Mechanism of ALS resistance in a common waterhemp (Amaranthus rudis) population. Proc. North Cent. Weed Sci. Soc. 50: 91.Google Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9: 192195.Google Scholar
Lovell, S. T., Wax, L. M., Horak, M. J., and Peterson, D. E. 1996a. Imidazolinone and sulfonylurea resistance in a biotype of common waterhemp (Amaranthus rudis). Weed Sci. 44: 789794.CrossRefGoogle Scholar
Lovell, S. T., Wax, L. M., Simpson, D. M., and McGlamery, M. D. 1996b. Using the in vivo acetolactase synthase (ALS) assay for identifying herbicide-resistant weeds. Weed Technol. 10: 936942.CrossRefGoogle Scholar
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4: 163168.CrossRefGoogle Scholar
Manley, B. S., Wilson, H. P., and Hines, T. E. 1995. An alteted acetolactate synthase is the basis for imidazolinone resistance in smooth pigweed (Amaranthus hybridus L.). Abst. Weed Sci. Soc. Am. 35: 191.Google Scholar
Newhouse, K., Wang, T., and Anderson, P. 1991. Imidazolinone-tolerant crops. in Shaner, D. L. and O'Connor, S. L., eds. The Imidazolinone Herbicides. Boca Raton, FL: CRC Press, pp. 139150.Google Scholar
Primiani, M. M., Cotterman, J. C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4: 169172.Google Scholar
Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93: 5561.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis Publishers, pp. 83140.Google Scholar
Schmenk, R. E., Barrett, M., and Witt, W. W. 1996. Smooth pigweed (Amaranthus hybridus L.) resistance to acetolactate synthase inhibiting herbicides. Abst. Weed Sci. Soc. Am. 36: 26.Google Scholar
Schmitzer, P. R., Eilers, R. J., and Cseke, C. 1993. Lack of cross-resistance of imalzaquin-resistant Xanthium strumarium acetolactate synthase to flumetsulam and chlorimuron. Plant Physiol. 103: 281283.Google Scholar
Shaner, D. L. 1991. Mechanisms of resistance to acetolactate synthase/acetohydtoxyacid synthase inhibitors. in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Oxford, England: Butterworth-Heinemann, pp. 187198.CrossRefGoogle Scholar
Simpson, D. M., Stoller, E. W., and Wax, L. M. 1995. An in vivo acetolactate synthase assay. Weed Technol. 9: 1722.Google Scholar
Snedecor, G. W. 1956. Statistical Methods. 5th ed. Ames, IA: The Iowa State University Press, pp. 173175.Google Scholar
Westerfeld, W. W. 1945. A colorimetric determination of blood acetoin. J. Biol. Chem. 161: 495502.CrossRefGoogle Scholar