Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T19:23:34.512Z Has data issue: false hasContentIssue false

Molecular Characterization of the Tubulin-Related Gene Families in Herbicide Resistant and Susceptible Goosegrass (Eleusine indica)

Published online by Cambridge University Press:  12 June 2017

Kirankumar S. Mysore
Affiliation:
Dep. Hortic., Clemson University, Poole Agric. Bldg., Clemson, SC 29634-0375
Wm. Vance Baird
Affiliation:
Dep. Hortic., Clemson University, Poole Agric. Bldg., Clemson, SC 29634-0375

Abstract

Goosegrass, wide spread throughout the tropics and subtropics, is one of the most noxious weeds known. Recently, biotypes of goosegrass have been found resistant to the dinitroaniline herbicides. An alteration in the structure/composition of a tubulin protein has been postulated as an explanation for the hyperstable microtubules and the resistant phenotype. Our study was initiated to investigate the structure of the alpha (α)-, beta (β)- and gamma (γ)-tubulin related gene sequences in resistant, intermediately resistant, and susceptible biotypes. Heterologous tubulin gene clones were used as probes of restriction endonuclease-digested genomic DNA from each biotype, to determine gene size and copy number and to screen for restriction fragment length polymorphisms. The tubulin genes are organized into gene families. There are three to five α-tubulin genes, four to seven β-tubulin genes, and four to eight γ-tubulin genes. There was no evidence of multiple copies or tandem repeats of any individual gene sequence. Although RFLPs were observed, no significant difference in the banding pattern between the resistant and the susceptible biotypes was found for either α-, β-, or γ-tubulin gene families. Therefore, it is unlikely that the difference between the herbicide-response phenotypes can be attributed to large deletions or insertions in a tubulin gene.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

1. Baird, V., Langner, C., Wells, J., Tucker, K., Whitwell, T., and Werth, C. 1992. Dinitroaniline resistant goosegrass [Eleusine indica (L.) Gaertn.] from the southeastern United States: Characterization of biotypes and population genetic analysis. Amer. J. Bot. 79:8990.Google Scholar
2. Baird, V. and Wells, J. 1994. Rapid in vitro germination of goosegrass (Eleusine indica) seed. Weed Technol. (submitted).Google Scholar
3. Bartels, P. G. and Hilton, J. L. 1973. Comparison of trifluralin, oryzalin, pronamide, prophan, and colchicine treatments on microtubules. Pestic. Biochem. Physiol. 3:462472.Google Scholar
4. Beckie, H., Friesen, L., Nawolsky, K., and Morrison, I. 1990. A rapid bioassay to detect trifluralin-resistant green foxtail (Setaria viridis). Weed Technol. 4:505508.Google Scholar
5. Cleveland, D. W. and Sullivan, K. F. 1985. Molecular biology and genetics of tubulin. Ann. Rev. Biochem. 54:331365.Google Scholar
6. Dellaporta, S. L., Wood, J., and Hicks, J. B. 1983. A plant DNA minipreparation: version 2. Plant Mol. Biol. Reporter 1:1922.Google Scholar
7. Donn, G., Tischer, E., Smith, J. A., and Goodman, H. M. 1984. Herbicide-resistant alfalfa cells: an example of gene amplification in plants. J. Mol. and App. Gen. 2:621635.Google Scholar
8. Feinberg, A. P. and Vogelstein, B. 1983. A technique for radiolabeling DNA restriction fragments to high specific activity. Anal. Biochem. 132:613.Google Scholar
9. Fosket, D. E. and Morejohn, L. C. 1992. Structural and functional organization of tubulin. Ann. Rev. Plant Physiol. Mol. Biol. 43:201240.Google Scholar
10. Garvey, E. P. and Santi, D. V. 1986. Stable amplified DNA in drug-resistant Leishmania exists as extrachromosomal circles. Science 233:535540.CrossRefGoogle ScholarPubMed
11. Guiltinan, M., Ma, D., Barker, R., Bustos, M., Cyr, R., Yadegari, R., and Fosket, D. 1987. The isolation, characterization and sequence of two divergent β-tubulin genes from soybean (Glycine max L.). Plant Mol. Biol. 10:171184.CrossRefGoogle ScholarPubMed
12. Hess, D. and Bayer, D. E. 1977. The binding of the herbicide trifluralin to Chlamydomonas flagellar tubulin. J. Cell Sci. 24:351360.Google Scholar
13. Hess, F. D. and Bayer, D. E. 1977. The effect of trifluralin on the ultrastructure of dividing cells of the root meristem of cotton (Gossypium hirsutum L. ‘Acala’ 4–42). J. Cell Sci. 15:429441.Google Scholar
14. Heywood, V. H. 1978. Flowering Plants of the World. New York: Mayflower Books, Inc. p. 335336.Google Scholar
15. Hilu, K. W. 1988. Identification of the “A” genome of finger millet using chloroplast DNA. Genetics 118:163167.Google Scholar
16. Hilu, K. W. and DeWet, J.M.J. 1976. Domestication of Eleusine coracana . Economic Bot. 30:199208.Google Scholar
17. Hiremath, S. C. and Salimath, S. S. 1992. The ‘A’ genome donor of Eleusine coracana (L.) Gaertn. (Gramineae). Theor. Appl. Genet. 84:747754.Google Scholar
18. Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds. Distribution and Biology. Honolulu: Univ. Press of Hawaii. p. 609.Google Scholar
19. Horio, T., Uzawa, S., Jung, M. K., Oakley, B. R., Tanaka, K., and Yanagida, M. 1991. The fission yeast γ-tubulin is essential for mitosis and is localized at microtubule organizing centers. J. Cell Sci. 99:693700.Google Scholar
20. Hugdahl, J. D. and Morejohn, L. C. 1993. Rapid and reversible high-affinity binding of the dinitroaniline herbicide oryzalin to tubulin from Zea mays L. Plant Physiol. 102:725740.CrossRefGoogle ScholarPubMed
21. James, S. W., Silflow, C. D., Stroom, P., and Lefebvre, P. A. 1993. A mutation in the alphal-tubulin gene of Chlamydomonas reinhardtii confers resistance to anti-microtubule herbicides. J. Cell Sci. 106:209218.Google Scholar
22. Joshi, H. C., Palacios, M. J., McNamara, L., and Cleveland, D. W. 1992. γ-Tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature 356:8083.Google Scholar
23. Kafatos, F. C., Orr, W., and Delidakis, C. 1985. Developmentally regulated gene amplification. TIG-November 1985, pp. 301306.Google Scholar
24. Kearney, P. C. and Kaufman, D. D. 1975. Herbicides Chemistry, Degradation and Mode of Action. second ed. New York: Marcel Dekker, Inc. pp. 454456, 490–494.Google Scholar
25. Lorenzi, H. J. and Jeffery, L. S. 1987. Weeds of the United States and Their Control. New York: Van Nostrand Reinhold Company Inc. p 64.Google Scholar
26. Ludwig, S. R., Oppenheimer, D. G., Silflow, C. D., and Snustad, P. D. 1988. The α1-tubulin gene of Arabidopsis thaliana: primary structure and preferential expression in flowers. Plant Mol. Biol. 10:311321.Google Scholar
27. Morejohn, L. C., Bureau, T., Mole-Bajer, J., Bajer, A. S., and Fosket, D. E. 1987. Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172:252264.Google Scholar
28. Mouches, C., Pasteur, N., Berge, J. B., Hyrien, O., Raymond, M., Vincent, B. R., Silvestri, M., and Georghiou, G. P. 1986. Amplification of esterase gene is responsible for insecticide resistance in a California Culex Mosquito. Science 233:778780.Google Scholar
29. Mudge, L. C., Gossett, B. J., and Murphy, T. R. 1984. Resistance of goosegrass (Eleusine indica) to dinitroaniline herbicides. Weed Sci. 32:591594.Google Scholar
30. Mysore, K. S. 1994. Nuclear genome content in Eleusine and molecular characterization of the tubulin related gene families in E. indica . Clemson University: M.S. Thesis.Google Scholar
31. Oakley, C. E. and Oakley, B. R. 1989. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans . Nature 338:662664.Google Scholar
32. Oppenheimer, D., Haas, N., Silflow, C., and Snustad, D. P. 1988. The β-tubulin gene family of Arabidopsis thaliana: preferential accumulation of the β1 transcript in roots. Gene 63:87107.Google Scholar
33. Schibler, M. J. and Huang, B. 1991. The colR4 and colR15 β-tubulin mutations in Chlamydomonas confer altered sensitivities to microtubule inhibitors and herbicides by enhancing microtubule stability. J. Cell Biol. 113:605614.Google Scholar
34. Shah, D. M., Horsch, R. B., Klee, H. J., Kishore, G. M., Winter, J. A., Turner, N. E., Hironaka, C. M., Sanders, P. R., Gasser, C. S., Aykent, S., et al. 1986. Engineering herbicide tolerance in transgenic plants. Science 233:478481.Google Scholar
35. Smeda, R. J. and Vaughn, K. C. 1993. Resistance to dinitroaniline herbicides, in Herbicide Resistance in Plants: Ecology and Mechanisms, Spowels, J. A. and Holtum, J. A., Eds. Lewis Publishers: (in press).Google Scholar
36. Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503517.Google Scholar
37. Strachan, S. D. and Hess, F. D. 1983. The biochemical mechanism of action of the dinitroaniline herbicide oryzalin. Pestic. Biochem. Physiol. 20:141150.Google Scholar
38. Vaughn, K. C. 1986. Cytological studies of dinitroaniline-resistant Eleusine . Pestic. Biochem. Physiol. 26:6674.Google Scholar
39. Vaughn, K. C. 1986. Dinitroaniline resistance in goosegrass [Eleusine indica (L.) Gaertn.] is due to an altered tubulin. Weed Sci. Soc. Am. Abstr. 26:No. 77.Google Scholar
40. Vaughn, K. C. and Vaughan, M. A. 1990. Structural and biochemical characterization of dinitroaniline-resistant Eleusine . Pages 364375 in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies. Amer. Chem. Soc: Los Angeles, CA.Google Scholar
41. Vaughn, K. C., Vaughan, M. A., and Gossett, B. J. 1990. A biotype of goosegrass (Eleusine indica) with an intermediate level of dinitroaniline resistance. Weed Technol. 4:157162.Google Scholar
42. Waldin, T., Ellis, R., and Hussey, P. 1992. Tubulin-isotype analysis of two grass species resistant to dinitroaniline herbicides. Planta 188:258264.Google Scholar