Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T19:26:11.782Z Has data issue: false hasContentIssue false

Modeling site-specific wild oat (Avena fatua) emergence across a variable landscape

Published online by Cambridge University Press:  20 January 2017

Robert S. Gallagher
Affiliation:
Department of Crop and Soil Sciences, Pennsylvania State University, University Park, PA 16802
Armen R. Kemanian
Affiliation:
Blackland Research and Extension Center, Texas Agricultural Experiment Station, Temple, TX 76502
Hao Zhang
Affiliation:
Department of Statistics, Washington State University, Pullman, WA 99164-3144
E. Patrick Fuerst
Affiliation:
Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420

Abstract

The spatial and temporal pattern of wild oat emergence in eastern Washington is affected by the steep, rolling hills that dominate this landscape. The objective of this study was to assess the impact of landscape position and crop residue on the emergence phenology of wild oat. Emergence of a natural wild oat infestation was characterized over two growing seasons (2003 and 2004), at two wheat residue levels (0 and 500 g m−2), and at five landscape positions differing in slope, aspect, and elevation in a no-till winter wheat field. Wild oat emerged 1 to 2 wk earlier at south-facing landscape positions than at north-facing landscape positions. Crop residue delayed wild oat emergence by 7 to 13 d relative to bare soil at south-facing positions in 2003 and had a reduced effect on emergence at north-facing landscape positions. Therefore, preserving surface residues tended to synchronize emergence across the landscape and may facilitate better timing of weed control where residue is present. Emergence of wild oat was modeled as a function of thermal time adjusted by water potential using a Weibull function. Temperature explained more variation in the model than water potential. This model explained much of the variability in wild oat emergence among landscape positions over these 2 yr and may be useful as a tool to predict the timing of wild oat emergence. Results also indicate that site-specific modeling is a plausible approach to improving prediction of weed seedling emergence.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bauer, M. C., Meyer, S. E., and Allen, P. S. 1998. A simulation model to predict seed dormancy loss in the field for Bromus tectorum . L. J. Exp. Bot. 49:12351244.Google Scholar
Black, I. D. and Dyson, C. B. 1997. A model of the cost of delay in spraying weeds in cereals. Weed Res. 37:139146.CrossRefGoogle Scholar
Blackshaw, R. E. 1993. Downy brome (Bromus tectorum) density and relative time of emergence affects interference in winter wheat (Triticum aestivum). Weed Sci. 41:551556.CrossRefGoogle Scholar
Benvenuti, S., Macchia, M., and Miele, S. 2001. Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Sci. 46:528535.CrossRefGoogle Scholar
Benech-Arnold, R. L., Ghersa, C. M., Sanchez, R. A., and Garcia-Fernandez, A. E. 1988. The role of fluctuating temperatures in the germination and establishment of Sorghum halepense (L.) Pers. regulation of germination under leaf canopies. Funct. Ecol. 2:311318.CrossRefGoogle Scholar
Benech-Arnold, R. L., Sanchez, R. A., Forcella, F., Kruk, B. C., and Ghersa, C. M. 2000. Environmental control of dormancy in weed seed banks in soil. Field Crop Res. 67:105122.CrossRefGoogle Scholar
Bristow, K. L. 1988. The role of mulch and its architecture in modifying soil temperatures. Aust. J. Soil Res. 26:269280.CrossRefGoogle Scholar
Bullied, W. J., Marginet, A. M., and Van Acker, R. C. 2003. Conventional- and conservation-tillage systems influencing emergence periodicity of annual weed species in canola. Weed Sci. 51:886897.Google Scholar
Campbell, G. S. and Norman, J. M. 1998. An Introduction to Environmental Biophysics. New York: Springer-Verlag, Pp. 1536.CrossRefGoogle Scholar
Carberry, P. S. and Campbell, L. C. 1989. Temperature parameters useful for modeling the germination and emergence of pearl millet. Crop Sci. 29:220223.CrossRefGoogle Scholar
Carmona, R. and Murdoch, A. J. 1995. Interactions of temperature and dormancy-relieving compounds on the germination of weed seeds. Seed Sci. Res. 5:227236.Google Scholar
Christensen, M., Myers, S. E., and Allen, P. S. 1996. A hydrothermal time model of seed after-ripening in Bromus tectorum . L. Seed Sci. Res. 6:155163.CrossRefGoogle Scholar
Clements, D. R., Benoit, D. L., Murphy, S. D., and Swanton, C. J. 1996. Tillage effects on weed seed return and seedbank composition. Weed Sci. 44:314322.Google Scholar
Conley, S. P., Binning, L. K., Boerboom, C. M., and Stoltenberg, D. E. 2003. Parameters for predicting giant foxtail cohort effect on soybean yield loss. Agron J. 95:12261232.CrossRefGoogle Scholar
Cousens, R., Weaver, S. E., Porter, J. R., Rooney, J. M., Butler, D. R., and Johnson, M. P. 1992. Growth and development of Avena fatua L. (Wild-oat) in the field. Ann. Appl. Biol. 120:339351.Google Scholar
du Croix Sissons, M. J., Van Acker, R. C., Derksen, D. A., and Thomas, A. G. 2000. Depth of seedling recruitment of five weed species measured in situ in conventional- and zero-tillage fields. Weed Sci. 48:327332.CrossRefGoogle Scholar
Dumur, D., Pilbeam, C. J., and Craigon, J. 1990. Use of the Weibull function to calculate cardinal temperatures in fava bean. J. Exp. Bot. 41:14231460.CrossRefGoogle Scholar
Finch-Savage, W. E. and Phelps, K. 1993. Onion (Allium cepa L.) seedlings emergence patterns can be explained by the influence of soil temperature and water potential on seed germination. J. Exp. Bot. 44:407414.CrossRefGoogle Scholar
Foley, M. E. 1994. Temperature and water status of seed affect after-ripening in wild oat (Avena fatua L). Weed Sci. 42:200204.CrossRefGoogle Scholar
Forcella, F. 1993. Seedling emergence model for velvetleaf. Agron. J. 85:929933.CrossRefGoogle Scholar
Forcella, F., Benech Arnold, R. L., Sanchez, R., and Ghersa, C. M. 2000. Modeling seedling emergence. Field Crop Res. 67:123139.Google Scholar
Forcella, F., Eradat-Oskoui, K., and Wagner, S. W. 1993. Application of weed seedbank ecology to low-input crop management. Ecol. Appl. 3:7483.Google Scholar
Gallagher, R. S., Steadmen, K. J., and Crawford, A. D. 2004. Alleviation of dormancy in annual ryegrass (Lolium rigidum) seeds by hydration and after-ripening. Weed Sci. 52:968975.CrossRefGoogle Scholar
Grundy, A. C. 2003. Predicting weed emergence: a review of approaches and future challenges. Weed Res. 43:111.CrossRefGoogle Scholar
Harvey, S. J. and Forcella, F. 1993. Vernal seedling emergence mode for common lambsquarters (Chenopodium album). Weed Sci. 41:309316.Google Scholar
Kenny, J. F. 1990. Measurement and Prediction of Tillage Effects on Hydraulic and Thermal Properties of Palouse Silt Loam. , Washington State University, Pullman, WA. 192 p.Google Scholar
King, C. A. and Oliver, L. R. 1994. A model for predicting large crabgrass (Digitaria sanguinalis) emergence as influenced by temperature and water potential. Weed Sci. 42:561567.CrossRefGoogle Scholar
Leblanc, M. L., Cloutier, D. C., Stewart, K. A., and Hamel, C. 2003. The use of thermal time to model common lambsquarters (Chenopodium album) seedling emergence in corn. Weed Sci. 51:718724.Google Scholar
Martinez-Ghersa, M. A., Sattore, E. H., and Ghersa, C. M. 1997. Effect of soil water content and temperature on dormancy breaking and germination in three weeds. Weed Sci. 45:791797.Google Scholar
Naylor, J. M. and Jana, S. 1976. Genetic adaptation for dormancy in Avena fatua . Can J. Bot. 54:306312.Google Scholar
Neter, J., Kutnerm, M. H., Nachtcheim, C. J., and Wasserman, W. 1996. Applied Linear Statistical Models. New York: WBC McGraw-Hill. Pp. 95151.Google Scholar
O'Donovan, J. T., de St. Remy, E. A., O'Sullivan, P. A., Dew, D. A., and Sharma, A. K. 1985. Influence of the relative time of emergence of wild oat (Avena fatua) on yield loss of barley (Hordeum vulgare) and wheat (Triticum aestivum). Weed Sci. 33:498503.Google Scholar
Oryokot, J. O. E., Murphy, S. D., Thomas, A. G., and Swanton, C. J. 1997. Temperature- and moisture-dependent models of seed germination and shoot elongation in green and redroot pigweed (Amaranthus powellii, A. retroflexus). Weed Sci. 45:488496.CrossRefGoogle Scholar
Page, E. R. 2004. Characterizing Spatially Variable Patterns of Wild Oat (Avena fatua L.) Emergence on the Palouse. , Washington State University, Pullman, WA. 85 p.Google Scholar
Probert, R. J. 2000. The role of temperature in the regulation of seed dormancy and germination. Pages 261292 in Fenner, M., ed. Seeds: The Ecology of Regeneration in Plant Communities, 2nd ed. Wallingford, UK: CABI Publishing.Google Scholar
Rice, K. J. and Dyer, A. R. 2001. Seed ageing, delayed germination and reduced competitive ability in Bromus tectorum . Plant Ecol. 155:237243.Google Scholar
Roman, E. S., Murphy, S. D., and Swanton, C. J. 2000. Simulation of Chenopodium album emergence. Weed Sci. 48:217224.Google Scholar
Roman, E. S., Thomas, A. G., Murphy, S. D., and Swanton, C. J. 1999. Modelling germination and seedling elongation of common lambsquarters (Chenopodium album). Weed Sci. 47:149155.Google Scholar
[SAS] Statistical Analysis Systems. 1988. SAS User's Guide. Version 6.03. Cary, N.C.: Statistical Analysis Systems Institute.Google Scholar
Satterthwaite, F. E. 1946. An approximate distribution of estimates of variance components. Biometrics. 2:110114.CrossRefGoogle ScholarPubMed
Schabenberger, O. and Pierce, F. J. 2002. Contemporary Statistical Models for the Plant and Soil Sciences. Boca Raton, FL: CRC Press. Pp. 504511.Google Scholar
Skopp, J., Jawson, M. D., and Doran, J. W. 1990. Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 54:16191625.Google Scholar
Symons, S. J., Naylor, J. M., Simpson, G. M., and Adkins, S. W. 1986. Secondary dormancy in Avena fatua: induction and characteristics in genetically pure dormant lines. Physiol. Plant. 68:2733.CrossRefGoogle Scholar
Symons, S. J., Simpson, G. M., and Adkins, S. W. 1987. Secondary dormancy in Avena fatua: effect of temperature and after-ripening. Physiol. Plant. 70:419426.CrossRefGoogle Scholar
Teasdale, J. R. and Mohler, C. L. 1993. Light transmittance, soil temperature, and soil moisture under residue of hairy vetch and rye. Agron. J. 85:673680.Google Scholar
Thompson, K., Grime, J. P., and Mason, G. 1977. Seed germination in response to diurnal fluctuations of temperature. Nature. 67:147149.CrossRefGoogle Scholar
Yenish, J. P., Doll, J. D., and Buhler, D. D. 1992. Effects of tillage on vertical distribution and viability of weed seed in soil. Weed Sci. 40:429433.Google Scholar