Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T21:03:48.908Z Has data issue: false hasContentIssue false

Mechanism of Synergism Between Metribuzin and MZH 2091 on Ivyleaf Morningglory (Ipomoea hederacea)

Published online by Cambridge University Press:  12 June 2017

Eva E. Klamroth
Affiliation:
Allgemeiner Pflanzenbau, Universität Bonn, Katzenburgweg 5, 5300 Bonn 1, Fed. Rep. of Germany Bayer AG, Geschäftsbereich Pflanzenschutz, Anwendungstechnik/Beratung, Pflanzenschutzzentrum Monheim, 5090 Leverkusen, Fed. Rep. of Germany
Carl Fedtke
Affiliation:
Bayer AG, Geschäftsbereich Pflanzenschutz, Anwendungstechnik/Biologische Forschung, Pflanzenschutzzentrum Monheim, 5090 Leverkusen, Fed. Rep. of Germany
Walter C. Kühbauch
Affiliation:
Allgemeiner Pflanzenbau, Universität Bonn, Katzenburgweg 5,5300 Bonn 1, Fed. Rep. of Germany

Abstract

Experiments were conducted in order to establish the mechanism by which the synergist MZH 2091 increases metribuzin activity on ivyleaf morningglory. Herbicide absorption and metabolism were compared for plants treated either with 14C-metribuzin alone or with 14C-metribuzin plus nonlabeled MZH 2091. The compounds were applied via the roots for 3 h and the absorption was determined. After the pulse treatment, the plants were grown for additional 0, 3, 6, 9, 12, 21, 45, or 69 h in water, and the metribuzin metabolism was studied in the cotyledons. The synergist did not interfere with herbicide uptake but did strongly inhibit metribuzin metabolism. The pathway of metribuzin metabolism in ivyleaf morningglory is discussed as well as the way it is affected by the synergist MZH 2091.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1989 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Abusteit, E. O., Corbin, F. T., Schmitt, D. P., Burton, J. W., Worsham, A. D., and Thompson, L. Jr. 1985. Absorption, translocation, and metabolism of metribuzin in diploid and tetraploid soybean (Glycine max) plants and cell cultures. Weed Sci. 33:618628.Google Scholar
2. Bergmann, W. 1958. Methoden zur Ermittlung mineralischer Bedürfnisse der Pflanze. Pages 3780 in Ruhland, W., ed. Handb. der Pflanzenphysiol. IV. Springer, Berlin-Göttingen-Heidelberg.Google Scholar
3. Cabanne, F., Huby, D., Gaillardon, P., Scalla, R., and Durst, F. 1987. Effect of the cytochrome P-450-inactivator 1-amino-benzotriazole on the metabolism of chlortoluron and isoproturon in wheat. Pestic. Biochem. Physiol. 28:371380.Google Scholar
4. Carlson, W. C. 1979. Today's herbicides. Weeds Today. 10:6, 7, 27.Google Scholar
5. Crafts, A. and Robbins, W. W. 1962. Weed Control. 3rd. ed. McGraw-Hill Book Co., New York.Google Scholar
6. Duncan, D. N., Megitt, W. F., and Penner, D. 1982. Basis for increased activity from herbicide combinations with ethofumesate applied on sugarbeet (Beta vulgaris). Weed Sci. 30:195200.Google Scholar
7. Eshel, Y., Zimdahl, R. L., and Schweitzer, E. E. 1976. Basis for interactions of ethofumesate and desmedipham on sugarbeets and weeds. Weed Sci. 24:619622.Google Scholar
8. Ezra, G., Dekker, J. H., and Stephenson, G. R. 1985. Tridiphane as a synergist for herbicides in corn (Zea mays) and Proso millet (Panicum miliaceum). Weed Sci. 33:287290.Google Scholar
9. Falb, L. N. and Smith, A. E. 1987. Metribuzin metabolism in soybeans: partial characterization of the polar metabolites. Pestic. Biochem. Physiol. 27:165172.Google Scholar
10. Fedtke, C. 1986. Selective metabolism of triazinone herbicides. Pestic. Sci. 17:6566.Google Scholar
11. Fedtke, C. and Schmidt, R. R. 1983. Behavior of metribuzin in tolerant and susceptible soybean varieties. Pages 117182 in Miyamoto, J. et al., eds. Human Welfare and the Environment. Pergamon Press, Oxford.Google Scholar
12. Fedtke, C., Marzolph, G., Lunkenheimer, W., and Zeck, W. 1988. Picolinic acid t-butyl amide, a synergist for metribuzin. Pages 133138 in Proc. EWRS Int. Symp. on Factors affecting herbicidal activity and selectivity. Ponsen & Looijen, Wageningen.Google Scholar
13. Frear, D. S. and Still, G. G. 1968. The metabolism of 3,4-dichloropropionanilide in plants. Partial purification and properties of an arylacylamidase from rice. Phytochemistry 7:913920.Google Scholar
14. Frear, D. S., Swanson, H. R., and Mansager, E. R. 1985. Alternate pathways of metribuzin metabolism in soybean: formation of N-glucoside and homoglutathione conjugates. Pestic. Biochem. Physiol. 23:5665.CrossRefGoogle Scholar
15. Gawronski, S.W., Haderlie, L. C., Callihan, R. C., and Dwelle, R. 1985. Metribuzin absorption, translocation, and distribution in two potato (Solanum tuberosum) cultivars. Weed Sci. 33:629634.Google Scholar
16. Genter, W. A. 1966. The influence of EPTC on external foliage wax development. Weeds. 14:2731.Google Scholar
17. Hargroder, T. G. and Rogers, R. L. 1974. Behavior and fate of metribuzin in soybean and hemp sesbania. Weed Sci. 22:238245.CrossRefGoogle Scholar
18. Hatzios, K. K. and Penner, D. 1982. Metabolism of herbicides in higher plants. Burgess Publishing Co., Minneapolis, MN.Google Scholar
19. Hilton, H. W., Nomura, N. S., Yanger, W. L. Jr., and Kameda, S. S. 1974. Absorption, translocation, and metabolism of metribuzin (BAY-94337) in sugarcane. J. Agric. Food Chem. 22:578582.Google Scholar
20. Klamroth, E. E. 1987. Wirkungsverbesserung des Herbizids Metribuzin gegenüber Ipomoea hederacea und Ipomoea purpurea in Sojakulturen durch synthetische Synergisten. Diss. Bonn, Germany.Google Scholar
21. Matsunaka, S. 1968. Propanil hydrolysis: Inhibition in rice plants by insecticides. Science. 160:13601361.CrossRefGoogle ScholarPubMed
22. Pfeiffer, R. K., Dewey, O. R., and Brunskill, R. T. 1957. Further investigation of the effect of pre-emergence treatment with trichloroacetic and dichloropropionic acids on the subsequent reaction of plants to other herbicidal sprays. Proc. 4th. Int. Pfl. Schutzkongreß, Hamburg. 1:523525.Google Scholar
23. Smith, L. W., Bayer, D. E., and Foy, C. L. 1968. Metabolism of amitrole by excised leaves of Canada thistle ecotypes and beans. Weed Sci. 16:523526.Google Scholar
24. Smith, A. E. and Wilkinson, R. E. 1974. Differential absorption, translocation and metabolism of metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H) one] by soybean cultivars. Physiol. Plant. 32:253257.Google Scholar
25. Thornton, J. S. and Stanley, C. W. 1977. Gas chromatographic determination of Sencor and metabolites in crops and soil. J. Agric. Food Chem. 25:380386.Google Scholar
26. Trebst, A. and Wietoska, H. 1975. Hemmung des photosynthetischen Elektronentransports von Chloroplasten durch Metribuzin. Z. Naturforsch. 30c:499504.Google Scholar