Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T09:14:13.107Z Has data issue: false hasContentIssue false

Measurement and Prediction of Picloram Disappearance Rates from Soil

Published online by Cambridge University Press:  12 June 2017

R. W. Meikle
Affiliation:
The Dow Chemical Company, Ag-Organics Research Laboratories, Walnut Creek, CA 94598
C. R. Youngson
Affiliation:
The Dow Chemical Company, Ag-Organics Research Laboratories, Walnut Creek, CA 94598
R. T. Hedlund
Affiliation:
The Dow Chemical Company, Ag-Organics Research Laboratories, Walnut Creek, CA 94598
C. A. I. Goring
Affiliation:
The Dow Chemical Company, Ag-Organics Research Laboratories, Walnut Creek, CA 94598
J. W. Hamaker
Affiliation:
The Dow Chemical Company, Ag-Organics Research Laboratories, Walnut Creek, CA 94598
W. W. Addington
Affiliation:
The Dow Chemical Company, Ag-Organics Research Laboratories, Walnut Creek, CA 94598

Abstract

We have shown by means of laboratory experiments with a wide range of soil types that the decomposition rate of picloram (4-amino-3,5,6-trichloropicolinic acid) in soil is dependent on soil temperature and moisture content and to no significant extent on organic matter, sand, silt, clay, pH, or initial concentration. A fractional order rate law (0.8) describes the disappearance rate best. It was not possible to develop a suitably precise equation for prediction of loss rate as affected by the above soil and climatic factors. Application of the Arrhenius equation to the data indicates an activation energy of 5.4 kcal/mol for the decomposition of picloram in soil, thus suggesting that the reaction is biological rather than chemical.

Type
Research Article
Copyright
Copyright © 1973 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Allison, L. E. 1965. Organic Carbon. Pages 13671378 in Black, C. A. (ed). Methods of soil analysis, Amer. Soc. of Agron. Inc., Madison, Wis. Google Scholar
2. Arrhenius, S. 1889. Über die Reaktiongeschwindigkeit bei der Inversion von Rohrzuker durch Säuren. Z. physik. Chem. 4:226248.Google Scholar
3. Bull, H. B. 1951. Physical biochemistry. John Wiley & Sons, Inc., New York, 2nd ed., 355 pp.Google Scholar
4. Burnside, O. C. 1965. Longevity of amiben, atrazine, and 2,3,6-TBA in incubated soils. Weeds 13:274276.Google Scholar
5. Day, P. R. 1965. Particle fractionation and particle-size analysis. Pages 545566 in Black, C. A. (ed). Methods of soil analysis, Amer. Soc. of Agron., Inc., Madison, Wis. Google Scholar
6. Goring, C. A. I., Griffith, J. D., O'Melia, F. C., Scott, H. H., and Youngson, C. R. 1967. The effect of TORDON® on microorganisms and soil biological processes. Down Earth 22(4):1417.Google Scholar
7. Goring, C. A. I. and Hamaker, J. W. 1971. The degradation and movement of picloram in soil and water. Down Earth 27(1):1215.Google Scholar
8. Hamaker, J. W. 1966. Mathematical prediction of cumulative levels of pesticides in soil. Pages 122131 in Gould, R. F. (ed). Organic pesticides in the environment. Amer. Chem Soc. Publ., Washington, D. C. Google Scholar
9. Hamaker, J. W., Goring, C. A. I., and Youngson, C. R. 1966. Sorption and leaching of 4-amino-3,5,6-trichloropicolinic acid in soils. Pages 2337 in Gould, R. F. (ed). Organic pesticides in the environment. Amer. Chem. Soc. Publ., Washington, D. C. CrossRefGoogle Scholar
10. Hamaker, J. W. and Kerlinger, H. O. 1969. Vapor pressure of pesticides. Pages 3954 in Gould, R. F. (ed). Pesticidal formulations research: Physical and colloidal chemical aspects. Amer. Chem. Soc. Publ., Washington, D.C. Google Scholar
11. Hamaker, J. W., Youngson, C. R., and Goring, C. A. I. 1967. Prediction of the persistence and activity of TORDON® herbicide in soils under field conditions. Down Earth 23(2):3036.Google Scholar
12. Hamaker, J. W., Youngson, C. R., and Goring, C. A. I. 1968. Rate of detoxification of 4-amino-3,5,6-trichloropicolinic acid in soil. Weed Res. 8:4657.CrossRefGoogle Scholar
13. Hance, R. J. 1967. Decomposition of herbicides in the soil by non-biological chemical processes. J. Sci. Food Agr. 18:544547.Google Scholar
14. Hance, R. J. and McKone, C. E. 1971. Effect of concentration on the decomposition rates in soil of atrazine, linuron and picloram. Pestic. Sci. 2:3134.Google Scholar
15. Kuprevich, V. F. and Shcherbakova, T. A. 1971. Comparative enzymatic activity in diverse types of soil. Pages 167201 in McLaren, A. D. and Skujins, J. (ed). Soil biochemistry. Marcel Dekker, Inc., New York.Google Scholar
16. Lineweaver, H. and Burk, D. 1934. The Determination of enzyme dissociation constants. J. Amer. Chem. Soc. 56:658666.CrossRefGoogle Scholar
17. Meikle, R. W., Williams, E. A., and Redemann, C. T. 1966. Metabolism of TORDON® herbicide (4-amino-3, 5,6-trichloropicolinic Acid) in cotton and decomposition in soil. J. Agr. Food Chem. 14:384387.Google Scholar
18. Paulson, K. N. and Kurtz, L. T. 1970. Michaelis constant of soil urease. Proc. Soil Sci. Soc. Amer. 34:7072.CrossRefGoogle Scholar
19. Peech, M. 1965. Hydrogen-ion activity, Pages 914925 in Black, C. A. (ed). Methods of soil analysis. Amer. Soc. of Agron., Inc., Madison, Wis. Google Scholar
20. Redemann, C. T., Meikle, R. W., Hamilton, P., Banks, V. S., and Youngson, C. R. 1968. The Fate of 4-amino-3,5,6-trichloropicolinic acid in spring wheat and soil. Bull. Environ. Contam. Toxicol. 3:8096.Google Scholar
21. Richards, L. A. 1965. Physical condition of water in soil. Pages 131137 in Black, C. A. (ed). Methods of soil analysis. Amer. Soc. of Agron., Inc., Madison, Wis. Google Scholar
22. Rose, A. H. 1965. Chemical microbiology. Butterworth and Co., London. 247 pp.Google Scholar
23. Sizer, I. W. 1943. Effect of temperature on enzyme kinetics. Pages 3562 in Nord, F. F. and Werkman, C. H. (ed). Advances in enzymology. Interscience Pub., Inc., New York.Google Scholar
24. Tabatabai, M. I. and Bremner, J. M. 1971. Michaelis constants of soil enzymes. Soil Biol. Biochem. 3:317323.Google Scholar
25. Youngson, C. R., Goring, C. A. I., Meikle, R. W., Scott, H. H., and Griffith, J. D. 1967. Factors influencing the decomposition of TORDON® herbicide in soil. Down Earth 23(2):311.Google Scholar