Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T19:29:56.323Z Has data issue: false hasContentIssue false

Loss of Glyphosate Efficacy: A Changing Weed Spectrum in Georgia Cotton

Published online by Cambridge University Press:  20 January 2017

Theodore M. Webster*
Affiliation:
Crop Protection and Management Research Unit, USDA-Agricultural Research Service, Tifton, GA 31793-0748
Lynn M. Sosnoskie
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794
*
Corresponding author's E-mail: [email protected]

Abstract

Introduction of glyphosate resistance into crops through genetic modification has revolutionized crop protection. Glyphosate is a broad-spectrum herbicide with favorable environmental characteristics and effective broad-spectrum weed control that has greatly improved crop protection efficiency. However, in less than a decade, the utility of this technology is threatened by the occurrence of glyphosate-tolerant and glyphosate-resistant weed species. Factors that have contributed to this shift in weed species composition in Georgia cotton production are reviewed, along with the implications of continued overreliance on this technology. Potential scenarios for managing glyphosate-resistant populations, as well as implications on the role of various sectors for dealing with this purported tragedy of the commons, are presented. Benghal dayflower, a glyphosate-tolerant species, continues to spread through Georgia and surrounding states, whereas glyphosate susceptibility in Palmer amaranth is endangered in Georgia and other cotton-producing states in the southern United States. Improved understanding of how glyphosate susceptibility in our weed species spectrum was compromised (either through occurrence of herbicide-tolerant or -resistant weed species) may allow us to avoid repeating these mistakes with the next herbicide-resistant technology.

Type
Special Topics
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, R. L. 2005. A multi-tactic approach to manage weed population dynamics in crop rotations. Agron. J. 97:15791583.Google Scholar
Anonymous, , 1998. Herbicide resistance and herbicide tolerance defined. Weed Technol. 12:789.Google Scholar
Bastiaans, L., Paolini, R., and Baumann, D. T. 2008. Focus on ecological weed management: what is hindering adoption? Weed Res. 48:481491.Google Scholar
Beckie, H. J. 2006. Herbicide-resistant weeds: management tactics and practices. Weed Technol. 20:793814.Google Scholar
Boerboom, C. M. 2007. The stewardship continuum. Pages 3236. in Boerboom, C. M. and Owen, M. D. K. National Glyphosate Stewardship Forum II: A Call to Action. St. Louis, MO North Central IPM Center. http://www.weeds.iastate.edu/mgmt/2007/NGSFII_final.pdf. Accessed: October 23, 2008.Google Scholar
Boerboom, C. M. and Owen, M. D. K. 2007. Introduction. Pages 45. in Boerboom, C. M. and Owen, M. D. K. National Glyphosate Stewardship Forum II: A Call to Action. St. Louis, MO North Central IPM Center. http://www.weeds.iastate.edu/mgmt/2007/NGSFII_final.pdf. Accessed: October 23, 2008.Google Scholar
Buchanan, G. A. 1974. Weed survey—southern states. South. Weed Sci. Soc. Res. Rep. 27:215249.Google Scholar
Buchanan, G. A. and McLaughlin, R. D. 1975. Influence of nitrogen on weed competition in cotton. Weed Sci. 23:324328.Google Scholar
Burger, J. and Gochfeld, M. 1998. The tragedy of the commons 30 years later. Environment. 40:413. 26–27.Google Scholar
Cardina, J., Webster, T. M., Herms, C. P., and Regnier, E. E. 1999. Development of weed IPM: Levels of integration for weed management. Pages 239267. in. D. D. Buhler, ed. Expanding the Context of Weed Management. New York Haworth.Google Scholar
[CTIC] Conservation Tillage Information Center 2005. National Crop Residue Management Survey: Conservation Tillage Data. http://www.ctic.purdue.edu/CTIC/CRM.html (password required). Verified: June 2, 2005.Google Scholar
Culpepper, A. S. 2006. Glyphosate-induced weed shifts. Weed Technol. 20:277281.Google Scholar
Culpepper, A. S., Flanders, J. T., Webster, T. M., and Prostko, E. P. 2008a. University of Georgia 2008 Herbicide Programs for Tropical Spiderwort Control in Cotton. Circular No. 923. University of Georgia Cooperative Extension. Pages 2. http://www.cropsoil.uga.edu/weedsci/HomepageFiles/TSW2008.pdf. Accessed: July 22, 2008.Google Scholar
Culpepper, A. S., Flanders, J. T., York, A. C., and Webster, T. M. 2004. Tropical spiderwort (Commelina benghalensis) control in glyphosate-resistant cotton. Weed Technol. 18:432436.Google Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54:620626.Google Scholar
Culpepper, A. S. and Kichler, J. M. 2009. University of Georgia herbicide programs for controlling glyphosate-resistant Palmer amaranth in 2009 cotton. University of Georgia Collge of Agricultural and Environmental Sciences, Circ. No. 924. http://mulch.cropsoil.uga.edu/weedsci/HomepageFiles/Palmer2009.pdf. Accessed: May 28, 2009.Google Scholar
Culpepper, A. S., Whitaker, J. R., MacRae, A. W., and York, A. C. 2008b. Distribution of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Georgia and North Carolina during 2005 and 2006. J. Cot. Sci. 12:306310.Google Scholar
Culpepper, A. S., York, A. C., and Marshall, M. W. 2009. Glyphosate-resistant Palmer amranth in the Southeast. Pages in Webster, T. M. Proceedings of the Southern Weed Science Society. Orlando, FL Southern Weed Science Society. 62:371.Google Scholar
Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Physiology of Herbicide Action. Englewood Cliffs, NJ Prentice Hall. 441.Google Scholar
Dill, G. M., CaJacob, C. A., and Padgette, S. R. 2008. Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag. Sci. 64:326331.Google Scholar
Dowler, C. C. 1995. Weed survey—southern states—broadleaf crops subsection. Pages 290305. in Street, J. E. Proceedings of the Southern Weed Science Society, Jan.16–18, 2005. Memphis, TN Southern Weed Science Society.Google Scholar
Duke, S. O. and Powles, S. B. 2008. Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64:319325.Google Scholar
Faden, R. B. 1993. The misconstrued and rare species of Commelina (Commelinaceae) in the eastern United States. Ann. Missouri Bot. Gard. 80:208218.Google Scholar
Gaines, T., Preston, C., Shaner, D., et al. 2009. A novel mechanism of resistance to glyphosate in Palmer amaranth (Amaranthus palmeri). Pages in Webster, T. M. Proceedings of the Southern Weed Science Society. Orlando, FL Southern Weed Science Society, 62:375.Google Scholar
Goodwin, M. 1994. An extension program for ACCase inhibitor resistance in Manitoba—a case study. Phytoprotection. 75:97102.Google Scholar
Gossett, B. J., Murdock, E. C., and Toler, J. E. 1992. Resistance Of Palmer amaranth (Amaranthus palmeri) to the dinitroaniline herbicides. Weed Technol. 6:587591.Google Scholar
Gould, F. 1995. Comparisons between resistance management strategies for insects and weeds. Weed Technol. 9:830839.CrossRefGoogle Scholar
Hall, J. C., Van Eerd, L. L., Miller, S. D., Owen, M. D. K., Prather, T. S., Shaner, D. L., Singh, M., Vaughn, K. C., and Weller, S. C. 2000. Future research directions for weed science. Weed Technol. 14:647658.Google Scholar
Hardin, G. 1968. The tragedy of the commons. Science. 162:12431248.Google Scholar
Heap, I. M. 2008. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/in.asp. Verified: March 1, 2008.Google Scholar
Heap, I. M. 2009. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/in.asp. Last accessed: May 27, 2009.Google Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9:192195.Google Scholar
James, C. 2006. Global Status of Commercialized Biotech/GM Crops: 2006. ISAAA Briefs No. 35. Ithaca, NY ISAAA.Google Scholar
Jasieniuk, M., BruleBabel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.Google Scholar
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci. 42:523527.Google Scholar
Krings, A., Burton, M. G., and York, A. C. 2002. Commelina benghalensis (Commelinaceae) new to North Carolina and an updated key to Carolina congeners. Sida. 20:419422.Google Scholar
Llewellyn, R. S. and Allen, D. M. 2006. Expected mobility of herbicide resistance via weed seeds and pollen in a Western Australian cropping region. Crop Prot. 25:520526.CrossRefGoogle Scholar
Llewellyn, R. S., Lindner, R. K., Pannell, D. J., and Powles, S. B. 2007. Herbicide resistance and the adoption of integrated weed management by Western Australian grain growers. Agric. Econ. 36:123130.Google Scholar
Lloyd, B. 2007. The commons revisited: the tragedy continues. Energy Policy. 35:58065818.Google Scholar
MacRae, A. W., Culpepper, A. S., Webster, T. M., Sosnoskie, L. M., and Kichler, J. M. 2008. Glyphosate-resistant Palmer amaranth competition with roundup ready cotton. Pages 1696. in Boyd, S., et al Proceedings of the Beltwide Cotton Conference, 9–11 January 2008. Nashville, TN.Google Scholar
Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. 2001. Interference of Palmer amaranth in corn. Weed Sci. 49:202208.Google Scholar
McGaughey, W. H. and Johnson, D. E. 1992. Indianmeal moth (Lepidoptera, Pyralidae) resistance to different strains and mixture of Bacillus thuringiensis . J. Econ. Entomol. 85:15941600.Google Scholar
McKenzie, C. L. and Byford, R. L. 1993. Continuous, alternating, and mixed insecticides affect development of resistance in the horn fly (Diptera, Muscidae). J. Econ. Entomol. 86:10401048.Google Scholar
Milinski, M., Semmann, D., and Krambeck, H. J. 2002. Reputation helps solve the ‘tragedy of the commons’. Nature. 415:424426.Google Scholar
Miller, F. P. 2008. After 10,000 years of agriculture, whither agronomy? Agron. J. 100:2234.CrossRefGoogle Scholar
Monquero, P. A., Christoffoleti, P. J., Matas, J. A., and Heredia, A. 2004b. Leaf surface characterization and epicuticular wax composition in Commelina benghalensis, Ipomoea grandifolia and Amaranthus hybridus . Planta Daninha. 22:203210.Google Scholar
Monquero, P. A., Christoffoleti, P. J., Osuna, M. D., and De Prado, R. A. 2004a. Absorption, translocation and metabolism of glyphosate by plants tolerant and susceptible to this herbicide. Planta Daninha. 22:445451.Google Scholar
Moore, J. W., Murray, D. S., and Westerman, R. B. 2004. Palmer amaranth (Amaranthus palmeri) effects on the harvest and yield of grain sorghum (Sorghum bicolor). Weed Technol. 18:2329.Google Scholar
Morgan, G. D., Baumann, P. A., and Chandler, J. M. 2001. Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol. 15:408412.Google Scholar
Mueller, T. C., Mitchell, P. D., Young, B. G., and Culpepper, A. S. 2005. Proactive versus reactive management of glyphosate-resistant or -tolerant weeds. Weed Technol. 19:924933.Google Scholar
Nichols, R. L., Culpepper, A. S., Main, C. L., et al. 2008. Glyphosate-resistant populations of Amaranthus palmeri prove difficult to control in the Southern United States. Paper 556, Pp. 227. Presentation available at http://www.cottoninc.com/Weed_Management/Glyphosate-Resistant-Populations-US/Glyphosate-Resistant-Populations-US.pdf?CFID=9015398&CFTOKEN=98050844. International Weed Science Conference, Vancouver, British Columbia, Canada.Google Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol. 22:108113.Google Scholar
Owen, M. D. K. 2007. Understanding the key issues of glyphosate-resistant weeds. Pages 2731. in Boerboom, C. M. and Owen, M. D. K. National Glyphosate Stewardship Forum II: A Call to Action. St. Louis, MO North Central IPM Center. http://www.weeds.iastate.edu/mgmt/2007/NGSFII_final.pdf. Accessed: October 23, 2008.Google Scholar
Owen, M. D. K. and Boerboom, C. M. 2004. Executive summary. Page 4 in Owen, M. D. K. and Boerboom, C. M. National Glyphosate Stewardship Forum. St. Louis, MO. http://www.weeds.iastate.edu/weednews/2006/NGSF%20final%20report.pdf. Accessed October 23, 2008.Google Scholar
Potter, T. L., Truman, C. C., Bosch, D. D., and Bednarz, C. 2004. Fluometuron and pendimethalin runoff from strip and conventionally tilled cotton in the southern Atlantic Coastal Plain. J. Environ. Qual. 33:21222131.Google Scholar
Powles, S. B. 2008a. Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag. Sci. 64:360365.Google Scholar
Powles, S. B. 2008b. Evolution in action: glyphosate-resistant weeds threaten world crops. Outlooks Pest Manag. 20:256259.Google Scholar
Prabhaker, N., Toscano, N. C., and Henneberry, T. J. 1998. Evaluation of insecticide rotations and mixtures as resistance management strategies for Bemisia argentifolii (Homoptera: Aleyrodidae). J. Econ. Entomol. 91:820826.Google Scholar
Preston, C., Tardif, F. J., Christopher, J. T., and Powles, S. B. 1996. Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicide degrading enzymes. Pest. Biochem. Physiol. 54:123134.Google Scholar
Prostko, E. P., Culpepper, A. S., Webster, T. M., and Flanders, J. T. 2005. Tropical spiderwort identification and control in Georgia field crops. Tifton, GA University of Georgia Cooperative Extension Service Bulletin. Available at http://pubs.caes.uga.edu/caespubs/pubs/PDF/c884.pdf.Google Scholar
Rankin, D. J., Bargum, K., and Kokko, H. 2007. The tragedy of the commons in evolutionary biology. Trends Ecol. Evol. 22:643651.Google Scholar
Rowland, M. W., Murray, D. S., and Verhalen, L. M. 1999. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci. 47:305309.Google Scholar
Semmann, D., Krambeck, H. J., and Milinski, M. 2005. Reputation is valuable within and outside one's own social group. Behav. Ecol. Sociobiol. 57:611616.Google Scholar
Shaner, D. 1999. My view. Weed Sci. 47:255.Google Scholar
Shaner, D. L. 1995. Herbicide resistance: where are we? How did we get here? Where are we going? Weed Technol. 9:850856.Google Scholar
Shaner, D. L. 2000. The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manag. Sci. 56:320326.Google Scholar
Shurley, W. D. 2006. Conservation tillage in Georgia cotton production. College of Agricultural and Environmental Sciences, University of Georgia. Pub. No. AGECON-06-112. Pages 24. http://commodities.caes.uga.edu/fieldcrops/cotton/TILLAGEPUBFINAL.pdf. Accessed: December 15, 2008.Google Scholar
Sosnoskie, L. M., Webster, T. M., Kichler, J. M., MacRae, A. W., and Culpepper, A. S. 2007. Preliminary estimates of glyphosate-resistant Amaranthus palmeri pollen dispersal distances. Page 28 in Main, C. L. Proceedings of the Beltwide Cotton Conference. New Orleans, LA.Google Scholar
Sprague, C. L., Stoller, E. W., Wax, L. M., and Horak, M. J. 1997. Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-inhibiting herbicides. Weed Sci. 45:192197.Google Scholar
Steckel, L. E., Main, C. L., Ellis, A. T., and Mueller, T. C. 2008. Palmer amaranth (Amaranthus palmeri) in Tennessee has low-level glyphosate resistance. Weed Technol. 22:119123.Google Scholar
Tao, L. M., Yang, J. Z., Zhuang, P. J., and Tang, Z. H. 2006. Effect of a mixture of iprobenfos and malathion on the development of malathion resistance in the mosquito Culex pipiens pallens Coq. Pest Manag. Sci. 62:8690.Google Scholar
Uphoff, N. and Langholz, J. 1998. Incentives for avoiding the Tragedy of the Commons. Environ. Conserv. 25:251261.Google Scholar
USDA-NASS 1997. Agricultural chemical use database, Upland Cotton 1996 Report. http://www.pestmanagement.info/nass/app_usage.cfm. Accessed: May 27, 2009.Google Scholar
USDA-NASS 2000. Agricultural chemical use database, Upland Cotton 1999 Report. http://www.pestmanagement.info/nass/app_usage.cfm. Accessed: May 27, 2009.Google Scholar
USDA-NASS 2001. Agricultural chemical use database, Upland Cotton 2000 Report. Pages 3053, available at http://www.pestmanagement.info/nass/. Accessed: October 27, 2008.Google Scholar
USDA-NASS 2004. Agricultural chemical use database, Upland Cotton 2003 Report. http://www.pestmanagement.info/nass/app_usage.cfm. Accessed: May 27, 2009.Google Scholar
USDA-NASS 2008. Agricultural chemical use database, Upland Cotton 2007 Report. http://www.pestmanagement.info/nass/app_usage.cfm. Accessed: May 27, 2009.Google Scholar
Velini, E. D., Alves, E., Godoy, M. C., Meschede, D. K., Souza, R. T., and Duke, S. O. 2008. Glyphosate applied at low doses can stimulate plant growth. Pest Manag. Sci. 64:489496.Google Scholar
Vencill, W. K., Grey, T. L., Culpepper, A. S., Gaines, C., and Westra, R. 2008. Herbicide-resistance in the Amaranthaceae . J. Plant Dis. Prot. Special Iss. XXI:4144.Google Scholar
Webster, T. M. 2005. Weed survey—southern states: Broadleaf crops subsection. Pages 291306. in Vencill, W. K. Proceedings of the Southern Weed Science Society. Charlotte, NC Southern Weed Science Society.Google Scholar
Webster, T. M., Burton, M. G., Culpepper, A. S., Flanders, J. T., Grey, T. L., and York, A. C. 2006. Tropical spiderwort (Commelina benghalensis) control and emergence patterns in preemergence herbicide systems. J. Cot. Sci. 10:6875.Google Scholar
Webster, T. M., Burton, M. G., Culpepper, A. S., York, A. C., and Prostko, E. P. 2005. Tropical spiderwort (Commelina benghalensis): a tropical invader threatens agroecosystems of the southern United States. Weed Technol. 19:501508.Google Scholar
Webster, T. M., Faircloth, W. H., Flanders, J. T., Prostko, E. P., and Grey, T. L. 2007. The critical period of Bengal dayflower (Commelina bengalensis) control in peanut. Weed Sci. 55:359364.Google Scholar
Webster, T. M., Grey, T. L., Flanders, J. T., and Culpepper, A. S. 2009. Cotton planting date affect the critical period of Benghal dayflower (Commelina benghalensis) control. Weed Sci. 57:8186.Google Scholar
Weersink, A., Llewellyn, R. S., and Pannell, D. J. 2005. Economics of pre-emptive management to avoid weed resistance to glyphosate in Australia. Crop Prot. 24:659665.CrossRefGoogle Scholar
Wilcut, J. W., York, A. C., and Jordan, D. L. 1993. Weed management for reduced tillage southeastern cotton. In McClelland, M. R., et al Conservation-Tillage Systems for Cotton: A Review of Research and Demonstration Results from across the Cotton Belt. Spec. Rep. 160. Arkansas Agric Exp. Stn., Fayetteville, AR. Google Scholar
Wilson, R. S., Tucker, M. A., Hooker, N. H., LeJeune, J. T., and Doohan, D. 2008. Perceptions and beliefs about weed management: perspectives of Ohio grain and produce farmers. Weed Technol. 22:339350.Google Scholar
Wise, A. M., Grey, T. L., Prostko, E. P., Vencill, W. K., and Webster, T. M. 2009. Establishing the geographic distribution level of acetolactate synthase resistance of Palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technol. 23:214220.Google Scholar
Wrubel, R. P. and Gressel, J. 1994. Are herbicide mixtures useful for delaying the rapid evolution of resistance—a case study. Weed Technol. 8:635648.Google Scholar
York, A. C. 2007. Updates from states (situation, distribution, impacts, research efforts): North Carolina. Page 4 in McClelland, M. Managing Glyphosate-Resistant Palmer Amaranth Roundtable. Little Rock, AR. http://www.cottoninc.com/2007%2DGlyphosate%2DResistant%2DPalmer%2DAmaranth/?S=AgriculturalResearch. Accessed: October 27, 2008.Google Scholar